让需求文档“开口说话”:基于Neo4j的结构化存储与测试用例生成

在测试工作中,我们常常面对冗长的需求文档,手动分析、提取信息不仅耗时,还容易遗漏关键细节。而随着大模型(如 DeepSeek-R1)的普及,如何高效地将结构化需求文档存储并转化为可被模型理解的知识,成为提升测试效率的重要环节。

在这篇文章中,我将和你一起探讨如何通过 Neo4j 图数据库 将结构化需求文档进行高效存储,以便后续利用大模型自动生成测试用例。通过这套方法,你将能够快速解析需求,建立数据关联,为后续智能化测试奠定坚实基础。


1. 为什么要结构化存储需求文档?

需求文档是测试工作的起点,也是测试用例设计的来源。然而,传统的文本形式有几个痛点:

  1. 信息分散且不易关联:文档中的功能描述、操作步骤和触发条件通常是散乱的,难以快速找到逻辑关系。
  2. 手动分析耗时:对复杂文档的逐字逐句分析,耗费大量人力。
  3. 智能化测试难以对接:直接将文档输入 AI 模型,效果往往不尽人意。

将需求文档结构化存储在图数据库中,可以将文档中的 背景信息功能模块操作步骤、以及 触发条件 转化为 节点关系,不仅让文档“开口说话”,还能为大模型生成测试用例提供精准上下文。


2. 脚本功能概述

这篇文章提供了一套 Python脚本,通过以下几步完成需求文档的解析与存储:

  1. 动态解析:根据文档的分隔符(如 *需求背景),提取关键部分内容。
  2. 结构化存储:将文档内容存储为图数据库中的节点与关系。
  3. 功能提取:从功能描述中自动识别模块名称和操作步骤。
  4. 触发路径关联:将触发条件与功能模块动态关联。

最终,我们将得到一个结构化的需求文档图谱,便于后续使用 DeepSeek-R1 模型提取信息,生成精准的测试用例。


3. 代码实现(一步步解析需求文档)

3.1 脚本的核心逻辑

以下是实现该功能的核心脚本代码,测试工程师可以直接拿来使用。

from py2neo import Graph, Node, Relationship
import re

# 动态配置:根据需求文档自定义解析规则
CONFIG = {
    "GRAPH_URI": "bolt://localhost:7687",  # Neo4j连接地址
    "GRAPH_AUTH": ("neo4j", "your_password"),  # 认证信息
    "SEPARATOR": "*",  # 文档部分的分隔符(如 *需求背景)
    "FUNCTION_KEYWORDS": {  # 功能描述关键词
        "MODULE_KEYWORDS": ["新增", "包含"],  # 标识模块的关键词
        "STEP_KEYWORDS": ["可", "需", "记录", "保存", "上传"]  # 标识操作步骤的关键词
    }
}

def connect_to_neo4j():
    """连接到Neo4j数据库"""
    return Graph(CONFIG["GRAPH_URI"], auth=CONFIG["GRAPH_AUTH"])

def parse_document(text, part_names):
    """
    解析需求文档,提取结构化内容
    :param text: 文档内容
    :param part_names: 自定义的文档部分名称
    :return: 字典 {部分名称: 内容}
    """
    parts = text.split(CONFIG["SEPARATOR"])[1:]  # 按分隔符分割
    parsed = {}
    for part in parts:
        lines = part.strip().split('\n')
        if not lines:
            continue
        key = lines[0].strip()
        if key in part_names:  # 仅解析指定部分
            value = '\n'.join([line.strip() for line in lines[1:]]).strip()
            parsed[key] = value
    missing = [part for part in part_names if part not in parsed]
    if missing:
        raise ValueError(f"缺少必要部分:{', '.join(missing)}")
    return parsed

def create_document_node(graph, title, content):
    """创建文档节点"""
    doc_node = Node("RequirementDocument", title=title, content=content)
    graph.create(doc_node)
    return doc_node

def create_part_nodes(graph, doc_node, parsed):
    """创建文档部分节点并关联到文档"""
    part_nodes = {}
    for part_name, content in parsed.items():
        part_node = Node("RequirementPart", name=part_name, content=content)
        graph.create(part_node)
        graph.create(Relationship(part_node, "BELONGS_TO", doc_node))
        part_nodes[part_name] = part_node
    return part_nodes

def extract_function_components(func_desc):
    """从功能描述中提取模块和步骤"""
    modules, steps = [], []
    sentences = re.split(r'[。!!]', func_desc.replace('\n', ' '))
    for sent in sentences:
        sent = sent.strip()
        if any(kw in sent for kw in CONFIG["FUNCTION_KEYWORDS"]["MODULE_KEYWORDS"]):
            modules.append(sent)
        if any(kw in sent for kw in CONFIG["FUNCTION_KEYWORDS"]["STEP_KEYWORDS"]):
            steps.append(sent)
    return modules, steps

def create_function_modules(graph, func_node, modules):
    """创建功能模块节点"""
    module_nodes = {}
    for module_str in modules:
        module_node = Node("FunctionModule", name=module_str, type="功能模块")
        graph.create(module_node)
        graph.create(Relationship(func_node, "INCLUDES", module_node))
        module_nodes[module_str] = module_node
    return module_nodes

def create_operation_steps(graph, module_node, steps):
    """创建操作步骤节点"""
    for step in steps:
        step_node = Node("OperationStep", step=step.strip())
        graph.create(step_node)
        graph.create(Relationship(module_node, "HAS_STEP", step_node))

def main():
    # 示例输入:需求文档内容
    text = """
    *需求背景
    项目旨在提高团队效率,提供管理工具。
    *功能描述
    系统新增“用户管理模块”,支持管理员新增用户、分配角色。用户可上传头像,管理员可记录用户信息。
    *触发
    系统启动 -> 用户管理模块 -> 新建用户
    """
    part_names = ["需求背景", "功能描述", "触发"]  # 自定义部分名称

    # 连接到Neo4j
    graph = connect_to_neo4j()

    # 解析文档
    parsed = parse_document(text, part_names)

    # 创建文档和部分节点
    doc_node = create_document_node(graph, "示例需求文档", text)
    part_nodes = create_part_nodes(graph, doc_node, parsed)

    # 功能描述处理
    func_node = part_nodes["功能描述"]
    modules, steps = extract_function_components(parsed["功能描述"])
    module_nodes = create_function_modules(graph, func_node, modules)
    for module in module_nodes.values():
        create_operation_steps(graph, module, steps)

    # 触发路径处理
    trigger_node = part_nodes["触发"]
    trigger_entry = Node("TriggerEntry", path=parsed["触发"])
    graph.create(trigger_entry)
    for module in module_nodes.values():
        graph.create(Relationship(trigger_entry, "TRIGGERS", module))

if __name__ == "__main__":
    main()

4. 从图数据库到智能测试:一条通路

4.1 用 DeepSeek-R1 自动生成测试用例

  • 图数据库:将需求文档存储在 Neo4j 中,建立节点和关系后,为 DeepSeek-R1 提供结构化上下文。
  • 生成测试用例:通过大模型对图数据库的查询结果进行语义分析,自动生成覆盖完整需求的测试用例。

4.2 可视化需求图谱

结合 Graphiti 工具,可以将 Neo4j 中的图结构可视化展示,帮助测试工程师直观分析需求逻辑和模块之间的关系。


5. 总结

这套方法将传统的需求文档处理流程从“手动劳动”提升为“智能协作”。通过 Neo4j 图数据库DeepSeek-R1 大模型 的结合,让需求文档不再是冰冷的文字,而是活跃的知识网络,为测试工作注入更高的效率和准确性。

还在等什么?快试试这套脚本,让你的需求文档“开口说话”吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值