在测试工作中,我们常常面对冗长的需求文档,手动分析、提取信息不仅耗时,还容易遗漏关键细节。而随着大模型(如 DeepSeek-R1)的普及,如何高效地将结构化需求文档存储并转化为可被模型理解的知识,成为提升测试效率的重要环节。
在这篇文章中,我将和你一起探讨如何通过 Neo4j 图数据库 将结构化需求文档进行高效存储,以便后续利用大模型自动生成测试用例。通过这套方法,你将能够快速解析需求,建立数据关联,为后续智能化测试奠定坚实基础。
1. 为什么要结构化存储需求文档?
需求文档是测试工作的起点,也是测试用例设计的来源。然而,传统的文本形式有几个痛点:
- 信息分散且不易关联:文档中的功能描述、操作步骤和触发条件通常是散乱的,难以快速找到逻辑关系。
- 手动分析耗时:对复杂文档的逐字逐句分析,耗费大量人力。
- 智能化测试难以对接:直接将文档输入 AI 模型,效果往往不尽人意。
将需求文档结构化存储在图数据库中,可以将文档中的 背景信息、功能模块、操作步骤、以及 触发条件 转化为 节点 和 关系,不仅让文档“开口说话”,还能为大模型生成测试用例提供精准上下文。
2. 脚本功能概述
这篇文章提供了一套 Python脚本,通过以下几步完成需求文档的解析与存储:
- 动态解析:根据文档的分隔符(如
*需求背景
),提取关键部分内容。 - 结构化存储:将文档内容存储为图数据库中的节点与关系。
- 功能提取:从功能描述中自动识别模块名称和操作步骤。
- 触发路径关联:将触发条件与功能模块动态关联。
最终,我们将得到一个结构化的需求文档图谱,便于后续使用 DeepSeek-R1 模型提取信息,生成精准的测试用例。
3. 代码实现(一步步解析需求文档)
3.1 脚本的核心逻辑
以下是实现该功能的核心脚本代码,测试工程师可以直接拿来使用。
from py2neo import Graph, Node, Relationship
import re
# 动态配置:根据需求文档自定义解析规则
CONFIG = {
"GRAPH_URI": "bolt://localhost:7687", # Neo4j连接地址
"GRAPH_AUTH": ("neo4j", "your_password"), # 认证信息
"SEPARATOR": "*", # 文档部分的分隔符(如 *需求背景)
"FUNCTION_KEYWORDS": { # 功能描述关键词
"MODULE_KEYWORDS": ["新增", "包含"], # 标识模块的关键词
"STEP_KEYWORDS": ["可", "需", "记录", "保存", "上传"] # 标识操作步骤的关键词
}
}
def connect_to_neo4j():
"""连接到Neo4j数据库"""
return Graph(CONFIG["GRAPH_URI"], auth=CONFIG["GRAPH_AUTH"])
def parse_document(text, part_names):
"""
解析需求文档,提取结构化内容
:param text: 文档内容
:param part_names: 自定义的文档部分名称
:return: 字典 {部分名称: 内容}
"""
parts = text.split(CONFIG["SEPARATOR"])[1:] # 按分隔符分割
parsed = {}
for part in parts:
lines = part.strip().split('\n')
if not lines:
continue
key = lines[0].strip()
if key in part_names: # 仅解析指定部分
value = '\n'.join([line.strip() for line in lines[1:]]).strip()
parsed[key] = value
missing = [part for part in part_names if part not in parsed]
if missing:
raise ValueError(f"缺少必要部分:{', '.join(missing)}")
return parsed
def create_document_node(graph, title, content):
"""创建文档节点"""
doc_node = Node("RequirementDocument", title=title, content=content)
graph.create(doc_node)
return doc_node
def create_part_nodes(graph, doc_node, parsed):
"""创建文档部分节点并关联到文档"""
part_nodes = {}
for part_name, content in parsed.items():
part_node = Node("RequirementPart", name=part_name, content=content)
graph.create(part_node)
graph.create(Relationship(part_node, "BELONGS_TO", doc_node))
part_nodes[part_name] = part_node
return part_nodes
def extract_function_components(func_desc):
"""从功能描述中提取模块和步骤"""
modules, steps = [], []
sentences = re.split(r'[。!!]', func_desc.replace('\n', ' '))
for sent in sentences:
sent = sent.strip()
if any(kw in sent for kw in CONFIG["FUNCTION_KEYWORDS"]["MODULE_KEYWORDS"]):
modules.append(sent)
if any(kw in sent for kw in CONFIG["FUNCTION_KEYWORDS"]["STEP_KEYWORDS"]):
steps.append(sent)
return modules, steps
def create_function_modules(graph, func_node, modules):
"""创建功能模块节点"""
module_nodes = {}
for module_str in modules:
module_node = Node("FunctionModule", name=module_str, type="功能模块")
graph.create(module_node)
graph.create(Relationship(func_node, "INCLUDES", module_node))
module_nodes[module_str] = module_node
return module_nodes
def create_operation_steps(graph, module_node, steps):
"""创建操作步骤节点"""
for step in steps:
step_node = Node("OperationStep", step=step.strip())
graph.create(step_node)
graph.create(Relationship(module_node, "HAS_STEP", step_node))
def main():
# 示例输入:需求文档内容
text = """
*需求背景
项目旨在提高团队效率,提供管理工具。
*功能描述
系统新增“用户管理模块”,支持管理员新增用户、分配角色。用户可上传头像,管理员可记录用户信息。
*触发
系统启动 -> 用户管理模块 -> 新建用户
"""
part_names = ["需求背景", "功能描述", "触发"] # 自定义部分名称
# 连接到Neo4j
graph = connect_to_neo4j()
# 解析文档
parsed = parse_document(text, part_names)
# 创建文档和部分节点
doc_node = create_document_node(graph, "示例需求文档", text)
part_nodes = create_part_nodes(graph, doc_node, parsed)
# 功能描述处理
func_node = part_nodes["功能描述"]
modules, steps = extract_function_components(parsed["功能描述"])
module_nodes = create_function_modules(graph, func_node, modules)
for module in module_nodes.values():
create_operation_steps(graph, module, steps)
# 触发路径处理
trigger_node = part_nodes["触发"]
trigger_entry = Node("TriggerEntry", path=parsed["触发"])
graph.create(trigger_entry)
for module in module_nodes.values():
graph.create(Relationship(trigger_entry, "TRIGGERS", module))
if __name__ == "__main__":
main()
4. 从图数据库到智能测试:一条通路
4.1 用 DeepSeek-R1 自动生成测试用例
- 图数据库:将需求文档存储在 Neo4j 中,建立节点和关系后,为 DeepSeek-R1 提供结构化上下文。
- 生成测试用例:通过大模型对图数据库的查询结果进行语义分析,自动生成覆盖完整需求的测试用例。
4.2 可视化需求图谱
结合 Graphiti 工具,可以将 Neo4j 中的图结构可视化展示,帮助测试工程师直观分析需求逻辑和模块之间的关系。
5. 总结
这套方法将传统的需求文档处理流程从“手动劳动”提升为“智能协作”。通过 Neo4j 图数据库 和 DeepSeek-R1 大模型 的结合,让需求文档不再是冰冷的文字,而是活跃的知识网络,为测试工作注入更高的效率和准确性。
还在等什么?快试试这套脚本,让你的需求文档“开口说话”吧!