前言:为什么测试工程师必须掌握Python高级特性?
通俗比喻:
- 基础语法就像“锤子”,能敲钉子;
- 高级特性就像“瑞士军刀”,能应对复杂场景(如自动化框架、高并发测试)。
- 面试官考察点:能否用Python构建高效、可维护的测试工具和框架。
一、函数式编程:让代码更简洁高效
1.1 匿名函数(Lambda)
面试题:如何用一行代码筛选出列表中的偶数?
代码:
nums = [1, 2, 3, 4]
evens = list(filter(lambda x: x % 2 == 0, nums)) # 筛选偶数
print(evens) # 输出: [2, 4]
通俗讲解:
lambda
是“临时工”:只用一次的小函数,适合简单逻辑。filter
是“筛子”:把符合条件的数据留下,不符合的丢掉。- 测试场景:快速处理测试数据(如过滤无效测试用例)。
1.2 列表推导式
面试题:如何快速生成100个测试账号?
代码:
test_users = [f"user_{
i}" for i in range(100)] # 生成100个用户名
print(test_users[:5]) # 输出: ['user_0', 'user_1', ..., 'user_4']
通俗讲解:
- 列表推导式是“工厂流水线”:一边循环一边生产数据。
- 测试场景:批量生成测试数据(如注册账号、请求参数)。
二、生成器:处理大数据的“节能模式”
2.1 生成器(Generator)
面试题:如何读取10GB的日志文件?
代码:
def read_log(file_path):
with open(file_path, "r") as f:
for line in f:
yield line # 一次只读一行,不占内存
for line in read_log("access.log"): #