Gaussian16的安装与使用

在化学和分子模拟的世界里Gaussian16是一款广泛使用的量子化学软件,它为研究人员提供了强大的工具来进行分子结构优化和其他复杂计算。无论您是研究新分子的性质,还是优化现有分子的结构,Gaussian16都能够为您的工作提供精确的计算结果和深刻的洞见。

本教程将引导您完成Gaussian16的安装过程,并介绍如何使用该软件优化分子结构。首先,我们将详细说明如何在您的计算机上安装Gaussian16,包括所需的系统配置和安装步骤。接着,我们将展示如何使用Gaussian16进行分子结构优化,通过调整分子的几何构型以找到其能量最低的稳定状态。

Gaussian16以其高效的算法和精确的计算能力,帮助您在分子模拟和理论化学研究中取得突破。跟随我们的教程,您将能够顺利安装Gaussian16,并熟练掌握其结构优化功能,为您的科研工作奠定坚实的基础。

  1. Gaussian16的安装

先检查shell的版本:

echo $SHELL

如果显示:

/bin/bash

则说明使用的是bash。下载对应版本的Gaussian压缩包。

使用tar -jxvf G16-A03-AVX2.tbz命令解压Gaussian16的压缩包,在本教程中解压路径为/root/autodl-tmp/student1,涉及路径的命令请根据实际情况修改。

在解压出的g16文件夹中新建一个tmp文件夹用于存放临时缓存,使用vim ~/.bashrc命令修改环境变量,加入以下语句后保存:

export g16root=/root/autodl-tmp/student1 export GAUSS_SCRDIR=/root/autodl-tmp/student1/g16/tmp source /root/autodl-tmp/student1/g16/bsd/g16.profile

使用命令source ~/.bashrc重新进入终端后即可使用Gaussian16.

使用g16<xxx.gjf>xxx.out命令调用Gaussian16

  1. 使用Gaussian16优化结构并计算esp电荷

  2. 分子结构获取

本教程以JZ4为例,从Pubchem上获取JZ4的3D结构SDF文件。

  1. 文件处理

对SDF文件进行处理以获得 Gaussian 可识别的文件格式JZ4.com,可使用软件Avogadro生成,

得到JZ4.com后修改文件后缀名为JZ4.gjf,获得Gaussian的输入文件,修改gjf文件选择并补充合适的核数、检查点文件、泛函和基组等关键词在gjf文件的开头,以及在坐标后面输入两个文件名JZ4_ini.gesp和JZ4.gesp,(前者为初始结构的RESP电荷,后者为优化后的RESP电荷),修改后文件内容如下:

  1. 使用Gaussian16优化结构

使用Gaussian16对结构进行优化并获得esp电荷:

g16<JZ4.gjf>JZ4.out

后续可选择out文件用AmberTools或者chk文件用Multiwfn计算获得RESP电荷和Amber立场参数文件。

最后,有相关需求欢迎通过公众号“320科技工作室”与我们联络。

### 实现 3D Gaussian Splatting 的准备工作 为了在 Ubuntu 上成功实现 3D Gaussian Splatting (3DGS),需要确保操作系统环境已经准备好并安装必要的依赖项。对于 Ubuntu 22.04 版本,建议按照以下指南操作。 #### 安装基础软件包 首先更新系统的软件源列表,并安装一些基本工具和库: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git wget unzip pkg-config libopencv-dev python3-pip -y ``` #### 设置 Python 和 PyTorch 环境 由于 3D Gaussian Splatting 需要使用到 PyTorch 进行模型训练推理,因此需先确认 CUDA 版本再选择合适的 PyTorch 版本来安装[^1]。可以通过命令 `nvcc --version` 来查看当前 GPU 所支持的 CUDA 版本号。接着通过 pip 工具来安装对应版本的 PyTorch 及其扩展组件 torchvision: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 这里假设使用的 CUDA 是 11.7 版本;如果不是,则应调整 URL 中 cu 后面的部分以匹配实际的 CUDA 版本。 #### 获取项目代码 从 GitHub 下载官方提供的 3D Gaussian Splatting 源码仓库: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting.git cd gaussian-splatting ``` #### 编译 C++ 组件 进入克隆下来的目录后,编译所需的 C++ 插件模块: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` 这一步骤会生成执行文件和其他必需的支持文件。 #### 准备数据集 如果打算测试自采集的数据集,在此之前还需要做额外的工作来处理这些原始图像序列或者点云数据,使其能够被算法所接受。具体方法可以参见相关文档说明[^3]。 #### 测试运行 最后,尝试启动示例程序验证整个流程是否正常工作: ```bash python3 main.py --config configs/example.yaml ``` 以上就是在 Ubuntu 平台上部署 3D Gaussian Splatting 技术的大致过程概述。需要注意的是,不同硬件配置可能会遇到不同的兼容性和性能优化问题,所以在实践中可能还需进一步调试参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CAE320

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值