假设检验 - 区间估计 (总体标准差σ已知)

标准正态分布表(带x)

1、所谓的正态分布表都是标准正态分布表(n(0,1) 【标准差=1,平均值=0】,通过查找实数x的位置,从而得到p(z<=x)。

2、表的纵向代表x的整数部分和小数点后第一位,横向代表x的小数点后第二位,然后就找到了x的位置。比如这个例子,纵向找2.0,横向找0,就找到了2.00的位置,查出0.9772

------------------------------------------------------------------------------------------------------------------------------------------------------------

学习【区间估计】笔记:

区间估计定义:就是用样本统计量来构造总体参数的估计区间。

举例说明:

已知:

1)总体标准差=1

2)样本容量=200

3)样本均值x拨=7.5

求总体均值u的估计区间

根据【点估计公式:样本标准差σ=总体标准差σ/根号样本容量】(当样本容量少于5%),求得样本标准差σ=1/√200=0.07

----> 根据正态分布的经验 ------> 任何正态分布的变量都有95%的值落在平均值1.96个标准差以内

------>所以x拨的值有95%是落在总体均值的1.96个样本标准差以内。

------> 根据总体均值的区间公式(x拨士Za/2*总体标准差σ/根号样本容量

------->(代入数字后)求得 7.5士Za/2*1/√200=7.5士Za/2*0.07

(Za/2 - 表示在标准正态分布上,右侧面积为a/2时,Z的值。这里被Z代表的含义搞得稀里糊涂的,查了好些资料,理解如下:

a为非置信水平在正态分布的覆盖面积,Za/2则为对应的标准分数。(听着还是一头雾水)

进一步查资料,Za/2代表的是一个临界值;意思就是说,当X取一个特定值时,需要将非标准正态分布中的X值 转换成 标准正态分布的Z值,然后进一步求得期在标准正态分布中所对应的概率/面积。事实上,可以理解成z是没有具体的代表意义,重要是其相对应的概率。

解答方法1

-------->因为置信水平 = 1-a=0.95, a=0.05

--------> Za/2=Z0.025

---------->在标准正态分布上,右侧面积为a/2 (这里=0.025)时,左侧面积=1-a/2=0.975时,Z的值

---------->反着查,根据标准正态分布表,0.975对应的z值=1.96

----------->7.5士Za/2*0.07 = 7.5士1.96*0.07 = (7.36,7.64)

----------->所以有95%的概率在【7.36,7.64】,此区间称为置信区间。

解答方法2(有待补充)

=====================================================================

试着求95%,99%置信水平情况下的置信区间。

90% -------》 7.5士Za/2*0.07  = 7.5士Z0.05*0.07=7.5士1.645*0.07=【7.38,7.62】

[要查Z0.05的值,即需要查1-0.05=0.95对应的Z值,翻开正态分布表,在表格中找到与0.95最接近的值为0.9495和0.9505,对应的Z值为1.64和1.65,故Z0.05=1.645]

99%-------->  7.5士Za/2*0.07  = 7.5士Z0.005*0.07=7.5士2.575*0.07=【7.32,7.68】

[要查Z0.05的值,即需要查1-0.005=0.995对应的Z值,翻开正态分布表,在表格中找到与0.995最接近的值为0.9949和0.9951,对应的Z值为2.57和2.58,故Z0.005=2.575]

-----------》由此可见为了获得更高的置信水平,必然会得到更宽的置信区间。

==========================================================================

其他定义:

置信区间:

1》指由样本统计量所构造的总体参数的估计区间

2》对于一组给定的样本数据,其平均值u,标准差西格玛,则其整体数据的平均值的100(1-a)%置信区间

为(u-Za/2*σ,u+Za/2*σ)

置信水平:

指总体参数值落在样本统计值某一个区间的概率,有【1-a】表示

================================================================

下面是在研究Za代表什么时,所查询的资料。截图一下,没准自己哪天忘了,看了能想起来。

-----------------------------------------

标准正态分布分位表 (带P)

1.正态分布里p值主要为了检验一组数据是否服从正态分布的标准。p值就是接受原假设是出错的概率。

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

数据分析大大白

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值