刷题记录(20240605)

 1.数组构造

题目描述
小红的数组构造小红希望你构造一个数组满足以下条件:
1.数组共有 n个元素,且所有元素两两不相等。
2.所有元素的最大公约数等于 k。
3.所有元素之和尽可能小。请你输出数组元素之和的最小值。
输入描述:
两个正整数 n 和 k。
输出描述:
一个正整数,代表数组元素之和的最小值,
输入示例:
3 1
输出示例:

6

分析:

数组只能是 1k,2k,3k,……,(n-1)k,nk 

求和可以用等差数列求和公式 (n+1)nk/2

代码:

#include <iostream>
using namespace std;

int main() {
    long long result = 0;
    int n, k;
    cin >> n >> k;

    // 使用等差数列求和公式进行计算
    result = k * (n * (n + 1LL) / 2);

    cout << result << endl;
    return 0;
}

2.精华帖子

题目描述
小红书的推荐帖子列表为 [0,n),其中所有的帖子初始状态为"普通",现在运营同学把其中的一些帖子区间标记为了“精华"。
运营同学选择了固定长度 k,对整个帖子列表截取,要求计算在固定的截取长度k下,能够截取获得的最多精华帖子数量。
输入描述
第一行输入三个正整数 n,m,k,分别代表初始帖子列表长度,精华区间的数量,以及运营同学准备截取的长度。
接下来的 m 行,每行输入两个正整数,| 和r,代表第i个左闭右开区间。
1 <= k<=n<= 20000000.
1<= m <= 100000.
0 <=l<ri<= n,保证任意两个区间是不重复的。
输出描述
一个正整数,代表截取获得的最多的精华帖子数量。
输入示例
5 2 3
1 2
3 5
输出示例

2

思路:

1.按照n,m,k构造输入序列v

2.先遍历前k个,统计精华帖子数量,再便利第k+1个,每次加上第i个,减掉第i-k个的值即可

3.返回最大的数量

代码:

#include<iostream>
#include <vector>
using namespace std;
int main(){
    int n,m,k;
    cin>>n>>m>>k;
    vector<vector<int>> p;
    while(m--){
        int a,b;
        cin>>a>>b;
        vector<int> p1 = {a,b};
        p.push_back(p1);
    }
    vector<int> v(n,0);
    for(auto it:p){
        for(int i = it[0];i<it[1];i++){
            v[i] = 1;
        }
    }
    int res = 0;
    int sum = 0;
    for(int i = 0;i<k;i++){
        res +=v[i];
    }
    sum = res;
    for(int i = k;i<n;i++){
        sum = sum + v[i] - v[i-k];
        res = max(res,sum);
    }
    cout<<res<<endl;
    
}

3.连续子数组最大和

题目描述
小红拿到了一个数组,她希望进行最多一次操作:将一个元素修改为x。小红想知道,最终的连续子数组最大和最大是多少?
输入描述
第一行输入一个正整数t,代表询问次数。对于每次询问,输入两行:
第一行输入两个正整数n和x。代表数组的大小,以及小红可以修改成的元素。第二行输入n个正整数a_i,代表小红拿到的数组
输出描述
输出t行,每行输出一个整数,代表连续子数组的最大和。
输入示例
3
5 10
5 -1 -5 -3 2
2 -3
-5 -2
6 10
4 -2 -11 -1 4 -1
输出示例

15

-2

15

思路:(代码随想录)

动态规划:最大子序和 的方法,先求出 [0 - i) 区间的 最大子序和 dp1  和  (i, n)的最大子序和dp2 

然后在遍历一遍i, 计算 dp1 + dp2 + vec[i] 的最大值就可以。

正序遍历,求出 [0 - i) 区间的 最大子序,dp[ i - 1]  表示 是 以 下标 i - 1为结尾的最大连续子序列和为dp[i - 1]。

所以 在计算区间 (i, n)即 dp2 的时候,我们要倒叙。因为我们求的是以 包括下标i + 1为起始位置的最大连续子序列和为dp[i + 1]。

这样  dp1 + dp2 + vec[i] 才是一个完整区间。

代码:

#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
    int t, n, x;
    cin >> t;
    while (t--) {
        cin >> n >> x;
        vector<int> vec(n);
        for (int i = 0; i < n; i++) cin >> vec[i];
        vector<int> dp1(n);
        dp1[0] = vec[0];
        int res = vec[0];
        // 从前向后统计最大子序和
        for (int i = 1; i < n; i++) {
            dp1[i] = max(dp1[i - 1] + vec[i], vec[i]); // 状态转移公式
            res = max(res, dp1[i]);
        }

        res = max(res, vec[n - 1]);
        // 从后向前统计最大子序和
        vector<int> dp2(n);
        dp2[n - 1] = vec[n - 1];
        for (int i = n - 2; i >= 0; i--) {
            dp2[i] = max(dp2[i + 1] + vec[i], vec[i]);
        }
        for (int i = 0 ; i < n ; i++) {
            int dp1res = 0;
            if (i > 0) dp1res = max(dp1[i-1], 0);
            int dp2res = 0;
            if (i < n - 1 ) dp2res = max(dp2[i+1], 0);

            res = max(res, dp1res + dp2res + x);
        }
        cout << res << endl;
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值