题目内容
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
一、题解要点
- 首先是用数组存放分割开来的数字字符,方便之后用sort函数对其进行排序
- 然后是输出格式一定要注意,用c++的cout来输出非常麻烦,而C的printf则可以很方便地解决这个问题
二、具体实现
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int main(){
int n; //保存输入的数字
int a[4] = {0}; //用来分割输入的数字
int big,small; //一个存最大值、一个存最小值
cin>>n;
do{
for(int i=0;i<4;i++){
a[i] = n%10;
n = n/10;
} //把输入的数字分割开来保存在数组中
sort(a,a+4,less<int>());//用sort函数进行排序
big = a[3]*1000+a[2]*100+a[1]*10+a[0];
small = a[0]*1000+a[1]*100+a[2]*10+a[3];
n = big - small;
printf("%04d - %04d = %04d\n",big,small,n);//按要求输出
}while(n != 6174 && n!=0);
return 0;
}
总结
这道题目也算是经典了,从高中开始只要涉及算法方面的都会有这题。总体来说并不算太难,但是最重要的点在于用printf输出,不然真的很麻烦,还容易出错。