范畴(Category)

参考文献:Advanced Modern Algebra - Joseph J. Rotman
前置文章:模(module)

罗素悖论

在”朴素集合论“中,“集合”的定义十分模糊,它使用“a collection of things”这一直觉来定义集合。如果我们定义“所有自包含集合”的集合 A A A,那么集合 A A A是否包含自己?如果 A A A包含自己,那么 A A A成为 A A A的一个成员(member);如果 A A A不包含自己,那么 A A A就不是 A A A的成员;两者都是自恰的,这是不可判定问题。虽然它没有对朴素集合论造成毁灭性打击,但我们接下来考虑下“不自包含集合”。

罗素集合(Russell set):一个集合 S S S,它不包含自己,即 S ∉ S S \notin S S/S

罗素悖论(Russell’s paradox):如果 R R R是所有罗素集合的收集,那么 R R R是罗素集合么?如果 R R R包含自己,那么根据定义 R ∉ R R \notin R R/R,矛盾;如果 R R R不包含自己,那么根据定义 R ∈ R R \in R RR,也矛盾。于是朴素集合论是自相矛盾的!

为了避免矛盾,”现代集合论“建立在诸多公理(axioms)上,这些公理禁止“自指”。我们定义原语(class)来取代set,我们将根据公理规则构建的class叫做集合(set),在它上面可以定义基数(cardinality),也就是说:一个classset    ⟺    \iff 它是“小”的(有一个基数)。我们将不是setclass叫做真类(proper class)。

通过制定“仅仅用于集合、但不用于真类”的规则,就可以避免悖论。

范畴(Category)

定义

一个范畴 C \mathcal C C包含三部分,

  1. 一个关于对象(objects)的类 o b j ( C ) obj(\mathcal C) obj(C)
  2. 关于态射(morphisms)的集合 H o m ( A , B ) Hom(A,B) Hom(A,B),其中 ( A , B ) (A,B) (A,B)是任意的对象有序对
  3. Hom集合的组合(composition) H o m ( A , B ) × H o m ( B , C ) → H o m ( A , C ) Hom(A,B) \times Hom(B,C) \to Hom(A,C) Hom(A,B)×Hom(B,C)Hom(A,C),定义为 ( f , g ) ↦ g f (f,g) \mapsto gf (f,g)gf,其中 ( A , B , C ) (A,B,C) (A,B,C)是任意的有序三元组

一般地,我们将态射 f ∈ H o m ( A , B ) f \in Hom(A,B) fHom(A,B)写作 f : A → B f:A \to B f:AB或者 A → f B A \overset{f}{\to} B AfB

这些成分要符合以下的公理:

  1. Hom集合是成对不同的(pairwise disjoint),即每一个态射都有唯一的域(domain)和唯一的目标(target)

  2. 对于任意的对象 A A A,都存在恒等态射(identity morphism) 1 A ∈ H o m ( A , A ) 1_A \in Hom(A,A) 1AHom(A,A),使得
    f 1 A = f ,    1 B f = f ,    ∀ f : A → B f 1_A = f,\,\, 1_B f = f,\,\, \forall f:A \to B f1A=f,1Bf=f,f:AB

  3. 组合是结合的(associative),给定态射 A → f B → g C → h D A \overset{f}{\to} B \overset{g}{\to} C \overset{h}{\to} D AfBgChD,那么
    h ( g f ) = ( h g ) f h(gf) = (hg)f h(gf)=(hg)f

范畴 C \mathcal C C的一个态射 f : A → B f:A \to B f:AB叫做等价(equivalence)或同构(isomorphism),如果存在一个态射 g : B → A g: B \to A g:BA,使得
g f = 1 A ,    f g = 1 B gf = 1_A,\,\, fg = 1_B gf=1A,fg=1B
我们说态射 g g g是同构 f f f(inverse),易知它是唯一的。

例子

  • 集合范畴 Sets:对象是集合,态射是函数,组合是函数的复合

  • 群范畴 Groups:对象是群,态射是同构,组合是函数的复合

  • 交换环范畴 CommRings:对象是交换环,态射是环同构,组合是函数的复合

  • 模范畴 R _R RMod:令 R R R是交换环,对象是 R − R- R模,态射是 R − R- R同构,组合是函数的复合

  • 交换群范畴 Ab:模范畴 Z _\mathbb Z Z Mod,就是阿贝尔群范畴

  • 部分有序集合(partially ordered set)范畴 PO(X):令集合 X X X是部分有序的(不是全序的),对象是集合元素,态射集合要么是空集要么只有一个元素
    H o m ( x , y ) = { ∅ , x ⋞̸ y κ y x , x ⋞ y Hom(x,y) = \left\{ \begin{aligned} \empty, && x \not \curlyeqprec y\\ \kappa^x_y, && x \curlyeqprec y\\ \end{aligned} \right. Hom(x,y)={,κyx,xyxy
    因为偏序 ⋞ \curlyeqprec 是传递的,组合为 κ z y κ y x = κ z x \kappa^y_z\kappa^x_y = \kappa^x_z κzyκyx=κzx

  • 拓扑空间范畴 Top:对象是拓扑空间,态射是连续函数(continuous functions),组合是函数的复合

  • C ( G ) \mathcal C(G) C(G)范畴:令 G G G是群,这个范畴的唯一对象定义为 ∗ * ,唯一的态射集合 H o m ( ∗ , ∗ ) = G Hom(*,*)=G Hom(,)=G,组合为 G × G → G G \times G \to G G×GG,这个范畴很特殊:由于 ∗ * 只是一个对象,不是集合,也就没有 f u n c t i o n : ∗ → ∗ function:* \to * function:,因此态射不是函数,且没有子对象(subobjects)

预加性

一个范畴 C \mathcal C C预加性的(pre-additive),如果任意的 H o m ( A , B ) Hom(A,B) Hom(A,B)都被配备(equipped)了一个二元运算成为加法交换群,对于任意的 f , g ∈ H o m ( A , B ) f,g \in Hom(A,B) f,gHom(A,B),满足

  1. 如果 p : B → B ′ p:B \to B' p:BB,那么 p ( f + g ) = p f + p g ∈ H o m ( A , B ′ ) p(f+g) = pf+pg \in Hom(A,B') p(f+g)=pf+pgHom(A,B)
  2. 如果 q : A ′ → A q:A' \to A q:AA,那么 ( f + g ) q = f q + g q ∈ H o m ( A ′ , B ) (f+g)q = fq+gq \in Hom(A',B) (f+g)q=fq+gqHom(A,B)
模范畴的预加性

R R R是环, M , N M,N M,N R − R- R模,定义
H o m R ( M , N ) = { a l l    R − h o m o m o r p h i s m    M → N } Hom_R(M,N) = \{ all\,\, R-homomorphism\,\, M \to N \} HomR(M,N)={allRhomomorphismMN}
如果 f , g ∈ H o m R ( M , N ) f,g \in Hom_R(M,N) f,gHomR(M,N),定义加法
f + g : m ↦ f ( m ) + g ( m ) f+g: m \mapsto f(m)+g(m) f+g:mf(m)+g(m)

R R R是交换环,数乘定义为
r f : m ↦ f ( r m ) rf: m \mapsto f(rm) rf:mf(rm)
于是 H o m R ( M , N ) Hom_R(M,N) HomR(M,N)成为 R − R- R模,且对于任意的 f , g ∈ H o m R ( M , N ) f,g \in Hom_R(M,N) f,gHomR(M,N)都有:

  1. 如果 p : M → M ′ p:M \to M' p:MM,那么 p ( f + g ) = p f + p g p(f+g) = pf+pg p(f+g)=pf+pg
  2. 如果 q : N ′ → N q:N' \to N q:NN,那么 ( f + g ) q = f q + g q (f+g)q = fq+gq (f+g)q=fq+gq

因此,交换环下的模是预加性范畴,它的态射可加。而可以证明,群范畴没有预加性的结构。

实际上,交换群之间的所有同态就是环,环之间的所有同态就是模,而模之间的所有同态依然是模。

范畴的图描述

范畴 C \mathcal C C(diagram)是一个有向图,它的点(vertices)是对象,箭头(arrows)是态射,路径(path)是组合。

我们称范畴 C \mathcal C C的图交换(commutes),如果对于每一个有序点对 ( A , B ) (A,B) (A,B),从 A A A B B B的任意路径对应的组合是相同态射。

在这里插入图片描述

余积

A , B A,B A,B是范畴 C \mathcal C C的对象,它们的余积(coproduct、sum)记做 A ⊔ B A \sqcup B AB,定义为一个对象 C ∈ o b j ( C ) C \in obj(\mathcal C) Cobj(C),伴随有注入态射(injection morphisms) α : A → C \alpha:A \to C α:AC β : B → C \beta:B \to C β:BC,它对于任意的对象 X X X以及任意一对态射 f : A → X f:A \to X f:AX g : B → X g:B \to X g:BX,总存在唯一的态射 θ : C → X \theta:C \to X θ:CX,使得
θ α = f ,    θ β = g \theta \alpha = f,\,\, \theta \beta = g θα=f,θβ=g
也就是说,下图交换:

在这里插入图片描述

A , B ∈ o b j ( C ) A,B \in obj(\mathcal C) A,Bobj(C),那么 A , B A,B A,B的任意两个余积,如果它们存在,那么它们是同构的。证明如下图:

在这里插入图片描述

余积的例子
  • 集合范畴的余积存在:集合的不交并(disjoint unions),对于不交的集合 A , B A,B A,B,任意的 X X X以及 f , g f,g f,g,定义 h : A ⊔ B → X h:A \sqcup B \to X h:ABX
    h ( u ) = { f ( u ) , u ∈ A g ( u ) , u ∈ B h(u) = \left\{ \begin{aligned} f(u), && u \in A\\ g(u), && u \in B\\ \end{aligned} \right. h(u)={f(u),g(u),uAuB
    上述的 h h h是良定义的(well-defined),因为不交。

  • 群范畴的余积存在:群的自由积(free product)

  • 模范畴的余积存在:模的直和, C = A ⊕ B C = A \oplus B C=AB

  • 部分有序集合范畴的余积可能不存在。首先可以证明,令 a , b ∈ X a,b \in X a,bX,那么余积 a ⊔ b a \sqcup b ab就是 a , b a,b a,b的最小上界(the least upper bound,一个上界 m m m,它使得任意的上界 n n n都有 m ⋞ n m \curlyeqprec n mn)。然后,下面的集合的子集 { c , d } \{c,d\} {c,d}就没有最小上界,因此 c ⊔ d c \sqcup d cd不存在,如图:

在这里插入图片描述

A , B A,B A,B是范畴 C \mathcal C C的对象,它们的(product)记做 A ⊓ B A \sqcap B AB,定义为一个对象 P ∈ o b j ( C ) P \in obj(\mathcal C) Pobj(C),伴随有投影态射(projection morphisms) p : P → A p:P \to A p:PA q : P → B q:P \to B q:PB,它对于任意的对象 X X X以及任意一对态射 f : X → A f:X \to A f:XA g : X → B g:X \to B g:XB,总存在唯一的态射 θ : X → P \theta:X \to P θ:XP,使得
p θ = f ,    q θ = g p\theta = f,\,\, q\theta = g pθ=f,qθ=g
也就是说,下图交换:

在这里插入图片描述

A , B ∈ o b j ( C ) A,B \in obj(\mathcal C) A,Bobj(C),那么 A , B A,B A,B的任意两个积,如果它们存在,那么它们是同构的。证明类似余积,略。

积的例子
  • 集合范畴的积存在:集合的笛卡尔积(categorical product),对于集合 A , B A,B A,B P = A × B P=A \times B P=A×B,定义态射 p : ( a , b ) ↦ a p:(a,b) \mapsto a p:(a,b)a q : ( a , b ) ↦ b q:(a,b) \mapsto b q:(a,b)b,那么对于任意的 X X X f , g f,g f,g,可以找到满足条件的映射 θ : X → P \theta: X \to P θ:XP,它定义为
    θ : x ↦ ( f ( x ) , g ( x ) ) \theta: x \mapsto (f(x),g(x)) θ:x(f(x),g(x))

  • 群范畴的积存在:群的直积(direct product)

  • 如果环 R R R是交换环,令 A , B A,B A,B R − R- R模,那么它们的积 A ⊓ B A \sqcap B AB存在,事实上 A ⊓ B ≅ A ⊔ B A \sqcap B \cong A \sqcup B ABAB

推广

余积

{ A i : i ∈ I } \{A_i:i \in I\} {Ai:iI}是范畴 C \mathcal C C的一族被集合 I I I(可以是可数无限的)索引的对象,它们的余积是一个有序对 ( C , { α i : A i → C } ) (C,\{\alpha_i:A_i \to C\}) (C,{αi:AiC}),其中 C = ⨆ i ∈ I A i C = \bigsqcup_{i \in I} A_i C=iIAi,而 { α i : A i → ⨆ i ∈ I A i } ) \{\alpha_i:A_i \to \bigsqcup_{i \in I} A_i\}) {αi:AiiIAi})是一族注入态射,满足以下性质:对于任意的对象 X X X以及任意态射 f i : A i → X f_i:A_i \to X fi:AiX,总存在唯一的态射 θ : ⨆ i ∈ I A i → X \theta:\bigsqcup_{i \in I} A_i \to X θ:iIAiX,使得下图交换:

在这里插入图片描述

模的余积

R R R是交换环, { A i : i ∈ I } \{A_i:i \in I\} {Ai:iI}是一族 R − R- R模,它们的直积(direct product)记做 ∏ i ∈ I A i \prod_{i \in I} A_i iIAi,定义为笛卡尔积( I − I- I元组 ( a i ) (a_i) (ai)它的第 i i i坐标落在 A i A_i Ai里),加法和数乘为:
( a i ) + ( b i ) = ( a i + b i ) (a_i)+(b_i) = (a_i+b_i) (ai)+(bi)=(ai+bi)

r ( a i ) = ( r a i ) r(a_i) = (ra_i) r(ai)=(rai)

其中 r ∈ R r \in R rR a i , b i ∈ A i a_i,b_i \in A_i ai,biAi

一族 R − R- R模的直积,就是范畴 R _R RMod 的余积。

定理:令 R R R是交换环,对于任意的 R − R- R A A A { B i : i ∈ I } \{B_i: i \in I\} {Bi:iI},都有
H o m R ( A , ∏ i ∈ I B i ) ≅ ∏ i ∈ I H o m R ( A , B i ) Hom_R(A,\prod_{i \in I} B_i) \cong \prod_{i \in I} Hom_R(A,B_i) HomR(A,iIBi)iIHomR(A,Bi)
其中的 R − R- R同构为
ϕ : f ↦ ( p i f ) \phi: f \mapsto (p_if) ϕ:f(pif)
其中 p i p_i pi ∏ i ∈ I B i \prod_{i \in I} B_i iIBi的投影(projections)

{ A i : i ∈ I } \{A_i:i \in I\} {Ai:iI}是范畴 C \mathcal C C的一族被集合 I I I索引的对象,它们的是一个有序对 ( C , { α i : A i → C } ) (C,\{\alpha_i:A_i \to C\}) (C,{αi:AiC}),其中 C = ⊓ i ∈ I A i C = \sqcap_{i \in I} A_i C=iIAi,而 { p i : ⊓ i ∈ I A i → A i } ) \{p_i:\sqcap_{i \in I} A_i \to A_i\}) {pi:iIAiAi})是一族投影态射,满足以下性质:对于任意的对象 X X X以及任意态射 f i : X → A i f_i:X \to A_i fi:XAi,总存在唯一的态射 θ : X → ⊓ i ∈ I A i \theta: X \to \sqcap_{i \in I} A_i θ:XiIAi,使得下图交换:

在这里插入图片描述

模的积

R R R是交换环, { A i : i ∈ I } \{A_i:i \in I\} {Ai:iI}是一族 R − R- R模,它们的直和(direct sum)记做 ∑ i ∈ I A i \sum_{i \in I} A_i iIAi,定义为直积的子模,它只有有限多的非零坐标(having only finitely many nonzero coordinates)。如果 I I I是有限的,那么 ∑ i ∈ I A i = ∏ i ∈ I A i \sum_{i \in I} A_i = \prod_{i \in I} A_i iIAi=iIAi;如果 I I I是无限的,那么直和是直积的真子模(proper submodule)

一族 R − R- R模的直和,就是范畴 R _R RMod 的积。

定理:令 R R R是交换环,对于任意的 R − R- R B B B { A i : i ∈ I } \{A_i: i \in I\} {Ai:iI},都有
H o m R ( ∏ i ∈ I A i , B ) ≅ ∏ i ∈ I H o m R ( A i , B ) Hom_R(\prod_{i \in I} A_i,B) \cong \prod_{i \in I} Hom_R(A_i,B) HomR(iIAi,B)iIHomR(Ai,B)
其中的 R − R- R同构为
ϕ : f ↦ ( f α i ) \phi: f \mapsto (f\alpha_i) ϕ:f(fαi)
其中 α i \alpha_i αi ∑ i ∈ I A i \sum_{i \in I} A_i iIAi的注入(injections)

推论:令 A , A ′ , B , B ′ A,A',B,B' A,A,B,B都是 R − R- R模,那么就有如下同构
H o m R ( A , B ⊔ B ′ ) ≅ H o m R ( A , B ) ⊔ H o m R ( A , B ′ ) Hom_R(A,B \sqcup B') \cong Hom_R(A,B) \sqcup Hom_R(A,B') HomR(A,BB)HomR(A,B)HomR(A,B)

H o m R ( A ⊔ A ′ , B ) ≅ H o m R ( A , B ) ⊔ H o m R ( A ′ , B ) Hom_R(A \sqcup A',B) \cong Hom_R(A,B) \sqcup Hom_R(A',B) HomR(AA,B)HomR(A,B)HomR(A,B)

这里的 ⊔ \sqcup 是两个模的直和。

对偶结构:拉回、推出

Pullback

给定范畴 C \mathcal C C里的两个态射 f : B → A f:B \to A f:BA g : C → A g:C \to A g:CA(solution)是一个有序对 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它使得下图交换:

在这里插入图片描述

一个拉回纤维积(pullback、fibered product)是一个最优解 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α,β),存在唯一的态射 θ : X → D \theta: X \to D θ:XD,使得下图交换:

在这里插入图片描述
容易看出,对象 B , C , D , X B,C,D,X B,C,D,X以及它们之间的态射,组成了的交换图。但 ( D , { α , β } ) (D,\{\alpha,\beta\}) (D,{α,β})是针对所有的解 X X X,对于不是解的其他对象没有限制。

模的拉回

任给一个范畴,拉回不一定存在。

对于模范畴 R _R R Mod,其中的任意两个映射 f : B → A f: B \to A f:BA g : C → A g: C \to A g:CA,它们的拉回存在

我们定义
D = { ( b , c ) ∈ B ⊔ C : f ( b ) = g ( c ) } D = \{ (b,c) \in B \sqcup C: f(b) = g(c) \} D={(b,c)BC:f(b)=g(c)}
这里 ⊔ \sqcup 是模的直和。

然后再定义 α : D → C \alpha: D \to C α:DC为投影
α : ( b , c ) ↦ c \alpha: (b,c) \mapsto c α:(b,c)c
定义 β : D → B \beta: D \to B β:DB为投影
β : ( b , c ) ↦ b \beta: (b,c) \mapsto b β:(b,c)b
容易看出, ( D , α , β ) (D,\alpha,\beta) (D,α,β)是一个解。对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α,β),定义 θ : X → D \theta: X \to D θ:XD
θ : x ↦ ( β ′ ( x ) , α ′ ( x ) ) \theta: x \mapsto (\beta'(x),\alpha'(x)) θ:x(β(x),α(x))
由于 X X X是解,因此 f β ′ ( x ) = g α ′ ( x ) f\beta'(x) = g\alpha'(x) fβ(x)=gα(x)

然后可以证明图交换,且 θ \theta θ唯一,于是 ( D , α , β ) (D,\alpha,\beta) (D,α,β)是一个拉回。

Pushout

给定范畴 C \mathcal C C里的两个态射 f : A → B f:A \to B f:AB g : A → C g:A \to C g:AC(solution)是一个有序对 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它使得下图交换:

在这里插入图片描述

一个推出纤维和(pushout、fibered sum)是一个最优解 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α,β),存在唯一的态射 θ : D → X \theta: D \to X θ:DX,使得下图交换:

在这里插入图片描述

注意,与Pullback相比,Pushout的箭头全部相反。这是两个对偶结构(dual constructions)

容易看出,对象 B , C , D , X B,C,D,X B,C,D,X以及它们之间的态射,组成了余积的交换图。但 ( D , { α , β } ) (D,\{\alpha,\beta\}) (D,{α,β})是针对所有的解 X X X,对于不是解的其他对象没有限制。

模的推出

任给一个范畴,推出不一定存在。

对于模范畴 R _R R Mod,其中的任意两个映射 f : A → B f: A \to B f:AB g : A → C g: A \to C g:AC,它们的推出存在

我们定义
S = { ( f ( a ) , − g ( a ) ) ∈ B ⊔ C : a ∈ A } S = \{ (f(a),-g(a)) \in B \sqcup C: a \in A \} S={(f(a),g(a))BC:aA}
这里 ⊔ \sqcup 是模的直和。容易看出 S S S B ⊔ C B \sqcup C BC的子模,定义商模
D = ( B ⊔ C ) / S D = (B \sqcup C)/S D=(BC)/S
然后再定义 α : B → D \alpha: B \to D α:BD为注入
α : b ↦ ( b , 0 ) + S \alpha: b \mapsto (b,0)+S α:b(b,0)+S
定义 β : C → D \beta: C \to D β:CD为注入
β : c ↦ ( 0 , c ) + S \beta: c \mapsto (0,c)+S β:c(0,c)+S
容易看出, ( D , α , β ) (D,\alpha,\beta) (D,α,β)是一个解。对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α,β),定义 θ : D → X \theta: D \to X θ:DX
θ : ( b , c ) + S ↦ ( α ′ ( b ) , β ′ ( c ) ) \theta: (b,c)+S \mapsto (\alpha'(b),\beta'(c)) θ:(b,c)+S(α(b),β(c))
然后可以证明图交换,且 θ \theta θ唯一,于是 ( D , α , β ) (D,\alpha,\beta) (D,α,β)是一个拉回。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值