参考文献:Advanced Modern Algebra - Joseph J. Rotman
前置文章:模(module)
罗素悖论
在”朴素集合论“中,“集合”的定义十分模糊,它使用“a collection of things”这一直觉来定义集合。如果我们定义“所有自包含集合”的集合 A A A,那么集合 A A A是否包含自己?如果 A A A包含自己,那么 A A A成为 A A A的一个成员(member);如果 A A A不包含自己,那么 A A A就不是 A A A的成员;两者都是自恰的,这是不可判定问题。虽然它没有对朴素集合论造成毁灭性打击,但我们接下来考虑下“不自包含集合”。
罗素集合(Russell set):一个集合 S S S,它不包含自己,即 S ∉ S S \notin S S∈/S
罗素悖论(Russell’s paradox):如果 R R R是所有罗素集合的收集,那么 R R R是罗素集合么?如果 R R R包含自己,那么根据定义 R ∉ R R \notin R R∈/R,矛盾;如果 R R R不包含自己,那么根据定义 R ∈ R R \in R R∈R,也矛盾。于是朴素集合论是自相矛盾的!
为了避免矛盾,”现代集合论“建立在诸多公理(axioms)上,这些公理禁止“自指”。我们定义原语类(class)来取代set
,我们将根据公理规则构建的class
叫做集合(set),在它上面可以定义基数(cardinality),也就是说:一个class
是set
⟺
\iff
⟺它是“小”的(有一个基数)。我们将不是set
的class
叫做真类(proper class)。
通过制定“仅仅用于集合、但不用于真类”的规则,就可以避免悖论。
范畴(Category)
定义
一个范畴 C \mathcal C C包含三部分,
- 一个关于对象(objects)的类 o b j ( C ) obj(\mathcal C) obj(C)
- 关于态射(morphisms)的集合 H o m ( A , B ) Hom(A,B) Hom(A,B),其中 ( A , B ) (A,B) (A,B)是任意的对象有序对
- Hom集合的组合(composition) H o m ( A , B ) × H o m ( B , C ) → H o m ( A , C ) Hom(A,B) \times Hom(B,C) \to Hom(A,C) Hom(A,B)×Hom(B,C)→Hom(A,C),定义为 ( f , g ) ↦ g f (f,g) \mapsto gf (f,g)↦gf,其中 ( A , B , C ) (A,B,C) (A,B,C)是任意的有序三元组
一般地,我们将态射 f ∈ H o m ( A , B ) f \in Hom(A,B) f∈Hom(A,B)写作 f : A → B f:A \to B f:A→B或者 A → f B A \overset{f}{\to} B A→fB
这些成分要符合以下的公理:
-
Hom集合是成对不同的(pairwise disjoint),即每一个态射都有唯一的域(domain)和唯一的目标(target)
-
对于任意的对象 A A A,都存在恒等态射(identity morphism) 1 A ∈ H o m ( A , A ) 1_A \in Hom(A,A) 1A∈Hom(A,A),使得
f 1 A = f , 1 B f = f , ∀ f : A → B f 1_A = f,\,\, 1_B f = f,\,\, \forall f:A \to B f1A=f,1Bf=f,∀f:A→B -
组合是结合的(associative),给定态射 A → f B → g C → h D A \overset{f}{\to} B \overset{g}{\to} C \overset{h}{\to} D A→fB→gC→hD,那么
h ( g f ) = ( h g ) f h(gf) = (hg)f h(gf)=(hg)f
范畴
C
\mathcal C
C的一个态射
f
:
A
→
B
f:A \to B
f:A→B叫做等价(equivalence)或同构(isomorphism),如果存在一个态射
g
:
B
→
A
g: B \to A
g:B→A,使得
g
f
=
1
A
,
f
g
=
1
B
gf = 1_A,\,\, fg = 1_B
gf=1A,fg=1B
我们说态射
g
g
g是同构
f
f
f的逆(inverse),易知它是唯一的。
例子
-
集合范畴 Sets:对象是集合,态射是函数,组合是函数的复合
-
群范畴 Groups:对象是群,态射是同构,组合是函数的复合
-
交换环范畴 CommRings:对象是交换环,态射是环同构,组合是函数的复合
-
模范畴 R _R RMod:令 R R R是交换环,对象是 R − R- R−模,态射是 R − R- R−同构,组合是函数的复合
-
交换群范畴 Ab:模范畴 Z _\mathbb Z Z Mod,就是阿贝尔群范畴
-
部分有序集合(partially ordered set)范畴 PO(X):令集合 X X X是部分有序的(不是全序的),对象是集合元素,态射集合要么是空集要么只有一个元素
H o m ( x , y ) = { ∅ , x ⋞̸ y κ y x , x ⋞ y Hom(x,y) = \left\{ \begin{aligned} \empty, && x \not \curlyeqprec y\\ \kappa^x_y, && x \curlyeqprec y\\ \end{aligned} \right. Hom(x,y)={∅,κyx,x⋞yx⋞y
因为偏序 ⋞ \curlyeqprec ⋞是传递的,组合为 κ z y κ y x = κ z x \kappa^y_z\kappa^x_y = \kappa^x_z κzyκyx=κzx -
拓扑空间范畴 Top:对象是拓扑空间,态射是连续函数(continuous functions),组合是函数的复合
-
C ( G ) \mathcal C(G) C(G)范畴:令 G G G是群,这个范畴的唯一对象定义为 ∗ * ∗,唯一的态射集合 H o m ( ∗ , ∗ ) = G Hom(*,*)=G Hom(∗,∗)=G,组合为 G × G → G G \times G \to G G×G→G,这个范畴很特殊:由于 ∗ * ∗只是一个对象,不是集合,也就没有 f u n c t i o n : ∗ → ∗ function:* \to * function:∗→∗,因此态射不是函数,且没有子对象(subobjects)
预加性
一个范畴 C \mathcal C C是预加性的(pre-additive),如果任意的 H o m ( A , B ) Hom(A,B) Hom(A,B)都被配备(equipped)了一个二元运算成为加法交换群,对于任意的 f , g ∈ H o m ( A , B ) f,g \in Hom(A,B) f,g∈Hom(A,B),满足
- 如果 p : B → B ′ p:B \to B' p:B→B′,那么 p ( f + g ) = p f + p g ∈ H o m ( A , B ′ ) p(f+g) = pf+pg \in Hom(A,B') p(f+g)=pf+pg∈Hom(A,B′)
- 如果 q : A ′ → A q:A' \to A q:A′→A,那么 ( f + g ) q = f q + g q ∈ H o m ( A ′ , B ) (f+g)q = fq+gq \in Hom(A',B) (f+g)q=fq+gq∈Hom(A′,B)
模范畴的预加性
令
R
R
R是环,
M
,
N
M,N
M,N是
R
−
R-
R−模,定义
H
o
m
R
(
M
,
N
)
=
{
a
l
l
R
−
h
o
m
o
m
o
r
p
h
i
s
m
M
→
N
}
Hom_R(M,N) = \{ all\,\, R-homomorphism\,\, M \to N \}
HomR(M,N)={allR−homomorphismM→N}
如果
f
,
g
∈
H
o
m
R
(
M
,
N
)
f,g \in Hom_R(M,N)
f,g∈HomR(M,N),定义加法
f
+
g
:
m
↦
f
(
m
)
+
g
(
m
)
f+g: m \mapsto f(m)+g(m)
f+g:m↦f(m)+g(m)
当
R
R
R是交换环,数乘定义为
r
f
:
m
↦
f
(
r
m
)
rf: m \mapsto f(rm)
rf:m↦f(rm)
于是
H
o
m
R
(
M
,
N
)
Hom_R(M,N)
HomR(M,N)成为
R
−
R-
R−模,且对于任意的
f
,
g
∈
H
o
m
R
(
M
,
N
)
f,g \in Hom_R(M,N)
f,g∈HomR(M,N)都有:
- 如果 p : M → M ′ p:M \to M' p:M→M′,那么 p ( f + g ) = p f + p g p(f+g) = pf+pg p(f+g)=pf+pg
- 如果 q : N ′ → N q:N' \to N q:N′→N,那么 ( f + g ) q = f q + g q (f+g)q = fq+gq (f+g)q=fq+gq
因此,交换环下的模是预加性范畴,它的态射可加。而可以证明,群范畴没有预加性的结构。
实际上,交换群之间的所有同态就是环,环之间的所有同态就是模,而模之间的所有同态依然是模。
范畴的图描述
图
范畴 C \mathcal C C的图(diagram)是一个有向图,它的点(vertices)是对象,箭头(arrows)是态射,路径(path)是组合。
我们称范畴 C \mathcal C C的图交换(commutes),如果对于每一个有序点对 ( A , B ) (A,B) (A,B),从 A A A到 B B B的任意路径对应的组合是相同态射。
余积
令
A
,
B
A,B
A,B是范畴
C
\mathcal C
C的对象,它们的余积或和(coproduct、sum)记做
A
⊔
B
A \sqcup B
A⊔B,定义为一个对象
C
∈
o
b
j
(
C
)
C \in obj(\mathcal C)
C∈obj(C),伴随有注入态射(injection morphisms)
α
:
A
→
C
\alpha:A \to C
α:A→C和
β
:
B
→
C
\beta:B \to C
β:B→C,它对于任意的对象
X
X
X以及任意一对态射
f
:
A
→
X
f:A \to X
f:A→X与
g
:
B
→
X
g:B \to X
g:B→X,总存在唯一的态射
θ
:
C
→
X
\theta:C \to X
θ:C→X,使得
θ
α
=
f
,
θ
β
=
g
\theta \alpha = f,\,\, \theta \beta = g
θα=f,θβ=g
也就是说,下图交换:
令 A , B ∈ o b j ( C ) A,B \in obj(\mathcal C) A,B∈obj(C),那么 A , B A,B A,B的任意两个余积,如果它们存在,那么它们是同构的。证明如下图:
余积的例子
-
集合范畴的余积存在:集合的不交并(disjoint unions),对于不交的集合 A , B A,B A,B,任意的 X X X以及 f , g f,g f,g,定义 h : A ⊔ B → X h:A \sqcup B \to X h:A⊔B→X为
h ( u ) = { f ( u ) , u ∈ A g ( u ) , u ∈ B h(u) = \left\{ \begin{aligned} f(u), && u \in A\\ g(u), && u \in B\\ \end{aligned} \right. h(u)={f(u),g(u),u∈Au∈B
上述的 h h h是良定义的(well-defined),因为不交。 -
群范畴的余积存在:群的自由积(free product)
-
模范畴的余积存在:模的直和, C = A ⊕ B C = A \oplus B C=A⊕B
-
部分有序集合范畴的余积可能不存在。首先可以证明,令 a , b ∈ X a,b \in X a,b∈X,那么余积 a ⊔ b a \sqcup b a⊔b就是 a , b a,b a,b的最小上界(the least upper bound,一个上界 m m m,它使得任意的上界 n n n都有 m ⋞ n m \curlyeqprec n m⋞n)。然后,下面的集合的子集 { c , d } \{c,d\} {c,d}就没有最小上界,因此 c ⊔ d c \sqcup d c⊔d不存在,如图:
积
令
A
,
B
A,B
A,B是范畴
C
\mathcal C
C的对象,它们的积(product)记做
A
⊓
B
A \sqcap B
A⊓B,定义为一个对象
P
∈
o
b
j
(
C
)
P \in obj(\mathcal C)
P∈obj(C),伴随有投影态射(projection morphisms)
p
:
P
→
A
p:P \to A
p:P→A和
q
:
P
→
B
q:P \to B
q:P→B,它对于任意的对象
X
X
X以及任意一对态射
f
:
X
→
A
f:X \to A
f:X→A与
g
:
X
→
B
g:X \to B
g:X→B,总存在唯一的态射
θ
:
X
→
P
\theta:X \to P
θ:X→P,使得
p
θ
=
f
,
q
θ
=
g
p\theta = f,\,\, q\theta = g
pθ=f,qθ=g
也就是说,下图交换:
令 A , B ∈ o b j ( C ) A,B \in obj(\mathcal C) A,B∈obj(C),那么 A , B A,B A,B的任意两个积,如果它们存在,那么它们是同构的。证明类似余积,略。
积的例子
-
集合范畴的积存在:集合的笛卡尔积(categorical product),对于集合 A , B A,B A,B, P = A × B P=A \times B P=A×B,定义态射 p : ( a , b ) ↦ a p:(a,b) \mapsto a p:(a,b)↦a与 q : ( a , b ) ↦ b q:(a,b) \mapsto b q:(a,b)↦b,那么对于任意的 X X X和 f , g f,g f,g,可以找到满足条件的映射 θ : X → P \theta: X \to P θ:X→P,它定义为
θ : x ↦ ( f ( x ) , g ( x ) ) \theta: x \mapsto (f(x),g(x)) θ:x↦(f(x),g(x)) -
群范畴的积存在:群的直积(direct product)
-
如果环 R R R是交换环,令 A , B A,B A,B是 R − R- R−模,那么它们的积 A ⊓ B A \sqcap B A⊓B存在,事实上 A ⊓ B ≅ A ⊔ B A \sqcap B \cong A \sqcup B A⊓B≅A⊔B
推广
余积
令 { A i : i ∈ I } \{A_i:i \in I\} {Ai:i∈I}是范畴 C \mathcal C C的一族被集合 I I I(可以是可数无限的)索引的对象,它们的余积是一个有序对 ( C , { α i : A i → C } ) (C,\{\alpha_i:A_i \to C\}) (C,{αi:Ai→C}),其中 C = ⨆ i ∈ I A i C = \bigsqcup_{i \in I} A_i C=⨆i∈IAi,而 { α i : A i → ⨆ i ∈ I A i } ) \{\alpha_i:A_i \to \bigsqcup_{i \in I} A_i\}) {αi:Ai→⨆i∈IAi})是一族注入态射,满足以下性质:对于任意的对象 X X X以及任意态射 f i : A i → X f_i:A_i \to X fi:Ai→X,总存在唯一的态射 θ : ⨆ i ∈ I A i → X \theta:\bigsqcup_{i \in I} A_i \to X θ:⨆i∈IAi→X,使得下图交换:
模的余积
令
R
R
R是交换环,
{
A
i
:
i
∈
I
}
\{A_i:i \in I\}
{Ai:i∈I}是一族
R
−
R-
R−模,它们的直积(direct product)记做
∏
i
∈
I
A
i
\prod_{i \in I} A_i
∏i∈IAi,定义为笛卡尔积(
I
−
I-
I−元组
(
a
i
)
(a_i)
(ai)它的第
i
i
i坐标落在
A
i
A_i
Ai里),加法和数乘为:
(
a
i
)
+
(
b
i
)
=
(
a
i
+
b
i
)
(a_i)+(b_i) = (a_i+b_i)
(ai)+(bi)=(ai+bi)
r ( a i ) = ( r a i ) r(a_i) = (ra_i) r(ai)=(rai)
其中 r ∈ R r \in R r∈R, a i , b i ∈ A i a_i,b_i \in A_i ai,bi∈Ai
一族 R − R- R−模的直积,就是范畴 R _R RMod 的余积。
定理:令
R
R
R是交换环,对于任意的
R
−
R-
R−模
A
A
A和
{
B
i
:
i
∈
I
}
\{B_i: i \in I\}
{Bi:i∈I},都有
H
o
m
R
(
A
,
∏
i
∈
I
B
i
)
≅
∏
i
∈
I
H
o
m
R
(
A
,
B
i
)
Hom_R(A,\prod_{i \in I} B_i) \cong \prod_{i \in I} Hom_R(A,B_i)
HomR(A,i∈I∏Bi)≅i∈I∏HomR(A,Bi)
其中的
R
−
R-
R−同构为
ϕ
:
f
↦
(
p
i
f
)
\phi: f \mapsto (p_if)
ϕ:f↦(pif)
其中
p
i
p_i
pi是
∏
i
∈
I
B
i
\prod_{i \in I} B_i
∏i∈IBi的投影(projections)
积
令 { A i : i ∈ I } \{A_i:i \in I\} {Ai:i∈I}是范畴 C \mathcal C C的一族被集合 I I I索引的对象,它们的积是一个有序对 ( C , { α i : A i → C } ) (C,\{\alpha_i:A_i \to C\}) (C,{αi:Ai→C}),其中 C = ⊓ i ∈ I A i C = \sqcap_{i \in I} A_i C=⊓i∈IAi,而 { p i : ⊓ i ∈ I A i → A i } ) \{p_i:\sqcap_{i \in I} A_i \to A_i\}) {pi:⊓i∈IAi→Ai})是一族投影态射,满足以下性质:对于任意的对象 X X X以及任意态射 f i : X → A i f_i:X \to A_i fi:X→Ai,总存在唯一的态射 θ : X → ⊓ i ∈ I A i \theta: X \to \sqcap_{i \in I} A_i θ:X→⊓i∈IAi,使得下图交换:
模的积
令 R R R是交换环, { A i : i ∈ I } \{A_i:i \in I\} {Ai:i∈I}是一族 R − R- R−模,它们的直和(direct sum)记做 ∑ i ∈ I A i \sum_{i \in I} A_i ∑i∈IAi,定义为直积的子模,它只有有限多的非零坐标(having only finitely many nonzero coordinates)。如果 I I I是有限的,那么 ∑ i ∈ I A i = ∏ i ∈ I A i \sum_{i \in I} A_i = \prod_{i \in I} A_i ∑i∈IAi=∏i∈IAi;如果 I I I是无限的,那么直和是直积的真子模(proper submodule)
一族 R − R- R−模的直和,就是范畴 R _R RMod 的积。
定理:令
R
R
R是交换环,对于任意的
R
−
R-
R−模
B
B
B和
{
A
i
:
i
∈
I
}
\{A_i: i \in I\}
{Ai:i∈I},都有
H
o
m
R
(
∏
i
∈
I
A
i
,
B
)
≅
∏
i
∈
I
H
o
m
R
(
A
i
,
B
)
Hom_R(\prod_{i \in I} A_i,B) \cong \prod_{i \in I} Hom_R(A_i,B)
HomR(i∈I∏Ai,B)≅i∈I∏HomR(Ai,B)
其中的
R
−
R-
R−同构为
ϕ
:
f
↦
(
f
α
i
)
\phi: f \mapsto (f\alpha_i)
ϕ:f↦(fαi)
其中
α
i
\alpha_i
αi是
∑
i
∈
I
A
i
\sum_{i \in I} A_i
∑i∈IAi的注入(injections)
推论:令
A
,
A
′
,
B
,
B
′
A,A',B,B'
A,A′,B,B′都是
R
−
R-
R−模,那么就有如下同构
H
o
m
R
(
A
,
B
⊔
B
′
)
≅
H
o
m
R
(
A
,
B
)
⊔
H
o
m
R
(
A
,
B
′
)
Hom_R(A,B \sqcup B') \cong Hom_R(A,B) \sqcup Hom_R(A,B')
HomR(A,B⊔B′)≅HomR(A,B)⊔HomR(A,B′)
H o m R ( A ⊔ A ′ , B ) ≅ H o m R ( A , B ) ⊔ H o m R ( A ′ , B ) Hom_R(A \sqcup A',B) \cong Hom_R(A,B) \sqcup Hom_R(A',B) HomR(A⊔A′,B)≅HomR(A,B)⊔HomR(A′,B)
这里的 ⊔ \sqcup ⊔是两个模的直和。
对偶结构:拉回、推出
Pullback
给定范畴 C \mathcal C C里的两个态射 f : B → A f:B \to A f:B→A和 g : C → A g:C \to A g:C→A,解(solution)是一个有序对 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它使得下图交换:
一个拉回或纤维积(pullback、fibered product)是一个最优解 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α′,β′),存在唯一的态射 θ : X → D \theta: X \to D θ:X→D,使得下图交换:
容易看出,对象
B
,
C
,
D
,
X
B,C,D,X
B,C,D,X以及它们之间的态射,组成了积的交换图。但
(
D
,
{
α
,
β
}
)
(D,\{\alpha,\beta\})
(D,{α,β})是针对所有的解
X
X
X,对于不是解的其他对象没有限制。
模的拉回
任给一个范畴,拉回不一定存在。
对于模范畴 R _R R Mod,其中的任意两个映射 f : B → A f: B \to A f:B→A和 g : C → A g: C \to A g:C→A,它们的拉回存在。
我们定义
D
=
{
(
b
,
c
)
∈
B
⊔
C
:
f
(
b
)
=
g
(
c
)
}
D = \{ (b,c) \in B \sqcup C: f(b) = g(c) \}
D={(b,c)∈B⊔C:f(b)=g(c)}
这里
⊔
\sqcup
⊔是模的直和。
然后再定义
α
:
D
→
C
\alpha: D \to C
α:D→C为投影
α
:
(
b
,
c
)
↦
c
\alpha: (b,c) \mapsto c
α:(b,c)↦c
定义
β
:
D
→
B
\beta: D \to B
β:D→B为投影
β
:
(
b
,
c
)
↦
b
\beta: (b,c) \mapsto b
β:(b,c)↦b
容易看出,
(
D
,
α
,
β
)
(D,\alpha,\beta)
(D,α,β)是一个解。对于任意的解
(
X
,
α
′
,
β
′
)
(X,\alpha',\beta')
(X,α′,β′),定义
θ
:
X
→
D
\theta: X \to D
θ:X→D为
θ
:
x
↦
(
β
′
(
x
)
,
α
′
(
x
)
)
\theta: x \mapsto (\beta'(x),\alpha'(x))
θ:x↦(β′(x),α′(x))
由于
X
X
X是解,因此
f
β
′
(
x
)
=
g
α
′
(
x
)
f\beta'(x) = g\alpha'(x)
fβ′(x)=gα′(x)
然后可以证明图交换,且 θ \theta θ唯一,于是 ( D , α , β ) (D,\alpha,\beta) (D,α,β)是一个拉回。
Pushout
给定范畴 C \mathcal C C里的两个态射 f : A → B f:A \to B f:A→B和 g : A → C g:A \to C g:A→C,解(solution)是一个有序对 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它使得下图交换:
一个推出或纤维和(pushout、fibered sum)是一个最优解 ( D , α , β ) (D,\alpha,\beta) (D,α,β),它对于任意的解 ( X , α ′ , β ′ ) (X,\alpha',\beta') (X,α′,β′),存在唯一的态射 θ : D → X \theta: D \to X θ:D→X,使得下图交换:
注意,与Pullback相比,Pushout的箭头全部相反。这是两个对偶结构(dual constructions)
容易看出,对象 B , C , D , X B,C,D,X B,C,D,X以及它们之间的态射,组成了余积的交换图。但 ( D , { α , β } ) (D,\{\alpha,\beta\}) (D,{α,β})是针对所有的解 X X X,对于不是解的其他对象没有限制。
模的推出
任给一个范畴,推出不一定存在。
对于模范畴 R _R R Mod,其中的任意两个映射 f : A → B f: A \to B f:A→B和 g : A → C g: A \to C g:A→C,它们的推出存在。
我们定义
S
=
{
(
f
(
a
)
,
−
g
(
a
)
)
∈
B
⊔
C
:
a
∈
A
}
S = \{ (f(a),-g(a)) \in B \sqcup C: a \in A \}
S={(f(a),−g(a))∈B⊔C:a∈A}
这里
⊔
\sqcup
⊔是模的直和。容易看出
S
S
S是
B
⊔
C
B \sqcup C
B⊔C的子模,定义商模
D
=
(
B
⊔
C
)
/
S
D = (B \sqcup C)/S
D=(B⊔C)/S
然后再定义
α
:
B
→
D
\alpha: B \to D
α:B→D为注入
α
:
b
↦
(
b
,
0
)
+
S
\alpha: b \mapsto (b,0)+S
α:b↦(b,0)+S
定义
β
:
C
→
D
\beta: C \to D
β:C→D为注入
β
:
c
↦
(
0
,
c
)
+
S
\beta: c \mapsto (0,c)+S
β:c↦(0,c)+S
容易看出,
(
D
,
α
,
β
)
(D,\alpha,\beta)
(D,α,β)是一个解。对于任意的解
(
X
,
α
′
,
β
′
)
(X,\alpha',\beta')
(X,α′,β′),定义
θ
:
D
→
X
\theta: D \to X
θ:D→X为
θ
:
(
b
,
c
)
+
S
↦
(
α
′
(
b
)
,
β
′
(
c
)
)
\theta: (b,c)+S \mapsto (\alpha'(b),\beta'(c))
θ:(b,c)+S↦(α′(b),β′(c))
然后可以证明图交换,且
θ
\theta
θ唯一,于是
(
D
,
α
,
β
)
(D,\alpha,\beta)
(D,α,β)是一个拉回。