Ring-Switch & Field-Switch

参考文献:

  1. [GHPS12] Gentry C, Halevi S, Peikert C, et al. Ring switching in BGV-style homomorphic encryption[C]//International Conference on Security and Cryptography for Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 19-37.
  2. [GHPS13] Gentry C, Halevi S, Peikert C, et al. Field switching in BGV-style homomorphic encryption[J]. Journal of Computer Security, 2013, 21(5): 663-684.
  3. Modulus Lift & Delayed Reduction

Ring-Switching

[GHPS12] 提出了环切换技术,它针对 coeff-packing,考虑的是 non-dual RLWE 版本。

对于任意的分圆多项式 Φ m ( X ) \Phi_m(X) Φm(X),定义:
R m = Z [ X ] / ( Φ m ( X ) ) C m = Z [ X ] / ( X m − 1 ) \begin{aligned} R_m &= \mathbb Z[X]/(\Phi_m(X))\\ C_m &= \mathbb Z[X]/(X^m-1) \end{aligned} RmCm=Z[X]/(Φm(X))=Z[X]/(Xm1)
额外定义 R m , q = R m / q R m R_{m,q} = R_m/qR_m Rm,q=Rm/qRm 以及 C m , q = C m / q C m C_{m,q}=C_m/qC_m Cm,q=Cm/qCm

假设 m = u ⋅ w m = u \cdot w m=uw,给定 f , g , h ∈ Z [ X ] f,g,h \in \mathbb Z[X] f,g,hZ[X]

  • 如果 h ( X ) ≡ f ( X ) ⋅ g ( X ) ( m o d Φ w ( X ) ) h(X) \equiv f(X) \cdot g(X) \pmod{\Phi_w(X)} h(X)f(X)g(X)(modΦw(X)),那么 h ( X u ) ≡ f ( X u ) ⋅ g ( X u ) ( m o d Φ m ( X ) ) h(X^u) \equiv f(X^u) \cdot g(X^u) \pmod{\Phi_m(X)} h(Xu)f(Xu)g(Xu)(modΦm(X))
  • 如果 h ( X ) ≡ f ( X ) ⋅ g ( X ) ( m o d X w − 1 ) h(X) \equiv f(X) \cdot g(X) \pmod{X^w-1} h(X)f(X)g(X)(modXw1),那么 h ( X u ) ≡ f ( X u ) ⋅ g ( X u ) ( m o d X m − 1 ) h(X^u) \equiv f(X^u) \cdot g(X^u) \pmod{X^m-1} h(Xu)f(Xu)g(Xu)(modXm1)

这可以视为环嵌入,将 R w R_w Rw 嵌入到 R m R_m Rm 的映射是 X w → X m u X_w \to X_m^u XwXmu C w ≤ C m C_w \le C_m CwCm 同理。

定义 Q m ( X ) = ( X m − 1 ) / Φ m ( X ) Q_m(X) = (X^m-1)/\Phi_m(X) Qm(X)=(Xm1)/Φm(X),以及多项式 G m ( X ) ∈ Z [ X ] G_m(X) \in \mathbb Z[X] Gm(X)Z[X],满足:
G m ( X ) ≡ m ( m o d Φ m ) G m ( X ) ≡ 0 ( m o d Q m ) \begin{aligned} G_m(X) &\equiv m \pmod{\Phi_m}\\ G_m(X) &\equiv 0 \pmod{Q_m}\\ \end{aligned} Gm(X)Gm(X)m(modΦm)0(modQm)
通过 CRT 求解出唯一的 G m ( X ) G_m(X) Gm(X),满足 deg ⁡ G m ≤ m − 1 \deg G_m \le m-1 degGmm1 以及 ∥ G m ∥ 2 = m ⋅ ϕ ( m ) \|G_m\|_2 = \sqrt{m \cdot \phi(m)} Gm2=mϕ(m)

那么多项式 G m G_m Gm 可以用于:把任意的等价类 f + ( Φ m ( X ) ) f+(\Phi_m(X)) f+(Φm(X)) 都 “提升”(Lift)到等价类 G ⋅ f + ( X m − 1 ) G\cdot f+(X^m-1) Gf+(Xm1),并且基本保持范数不变。将它定义到密文上,映射是:
( c 0 , c 1 ) ∈ R m , q 2 ↦ ( c 0 , c 1 ) ∈ Z [ X ] 2 ↦ ( G ⋅ c 0 , G ⋅ c 1 ) ∈ C m , q 2 (c_0, c_1) \in R_{m,q}^2 \mapsto (c_0,c_1) \in \mathbb Z[X]^2\mapsto \left(G \cdot c_0, G \cdot c_1\right) \in C_{m,q}^2 (c0,c1)Rm,q2(c0,c1)Z[X]2(Gc0,Gc1)Cm,q2
简记为 ( c , d ) ∈ C m , q 2 (c,d) \in C_{m,q}^2 (c,d)Cm,q2,假如 c 0 + c 1 ⋅ s = Δ a + δ e + q I ( m o d Φ m ) c_0 + c_1\cdot s = \Delta a + \delta e + qI \pmod{\Phi_m} c0+c1s=Δa+δe+qI(modΦm),其中 a ∈ R m , p a \in R_{m,p} aRm,p 是消息, e , I ∈ R m e,I \in R_m e,IRm 是噪声, p , q ∈ Z p,q \in \mathbb Z p,qZ 是明文和密文的模数, Δ , δ ∈ Z \Delta,\delta \in \mathbb Z Δ,δZ 是缩放因子,那么:
c + d ⋅ s = G m ⋅ ( Δ a + δ e + q I ( m o d Φ m ) ) = Δ ( G m ⋅ a ) + δ ( G m ⋅ e ) + q ( G m ⋅ I ) ( m o d X m − 1 ) \begin{aligned} c + d \cdot s &= G_m\cdot (\Delta a + \delta e + qI \pmod{\Phi_m})\\ &= \Delta(G_m\cdot a) + \delta(G_m\cdot e) + q(G_m\cdot I) \pmod{X^m-1} \end{aligned} c+ds=Gm(Δa+δe+qI(modΦm))=Δ(Gma)+δ(Gme)+q(GmI)(modXm1)
因此 ( c 0 ′ , c 1 ′ ) (c_0',c_1') (c0,c1) 是私钥 s ∈ Z [ X ] s \in \mathbb Z[X] sZ[X] 下的消息 G m ⋅ a ∈ C m , p G_m \cdot a \in C_{m,p} GmaCm,p 的密文,噪声 G m ⋅ e ∈ C m G_m \cdot e \in C_m GmeCm 是短的。注意 R m , q R_{m,q} Rm,q C m , q C_{m,q} Cm,q 都是 Z [ X ] \mathbb Z[X] Z[X]-模,提升前后的私钥 s s s 不需要改变。方便起见,我们将 Δ ( G m ⋅ a ) + δ ( G m ⋅ e ) \Delta(G_m\cdot a) + \delta(G_m\cdot e) Δ(Gma)+δ(Gme) 记作相位 μ ∈ C m \mu \in C_m μCm

现在我们考虑如下的环同构(Degree- u u u striding):
C m ≅ ( Z [ Y ] / ( Y w − 1 ) ) [ X ] / ( X u − Y ) C_m \cong (\mathbb Z[Y]/(Y^w-1))[X]/(X^u-Y) Cm(Z[Y]/(Yw1))[X]/(XuY)
具体的映射为:
a ( X ) = ∑ i = 0 m − 1 a i X i = ∑ k = 0 u − 1 X k ⋅ ( ∑ j = 0 w − 1 a k + u j ⋅ X u j ) = ∑ k = 0 u − 1 X k ⋅ a ( k ) ( Y ) \begin{aligned} a(X) &= \sum_{i=0}^{m-1}a_iX^i\\ &= \sum_{k=0}^{u-1}X^k\cdot \left(\sum_{j=0}^{w-1} a_{k+uj} \cdot X^{uj}\right)\\ &= \sum_{k=0}^{u-1} X^k \cdot a_{(k)}(Y) \end{aligned} a(X)=i=0m1aiXi=k=0u1Xk(j=0w1ak+ujXuj)=k=0u1Xka(k)(Y)
其中,系数 a ( k ) ∈ C w a_{(k)} \in C_w a(k)Cw 是如下的多项式,
a ( k ) ( Y ) = ∑ j = 0 w − 1 a k + u j ⋅ Y j a_{(k)}(Y) = \sum_{j=0}^{w-1} a_{k+uj} \cdot Y^{j} a(k)(Y)=j=0w1ak+ujYj
我们把 C m C_m Cm 视为一个 C w C_w Cw-模,它的一组 C w C_w Cw-basis 是 { X k } 0 ≤ k ≤ w − 1 \{X^k\}_{0\le k\le w-1} {Xk}0kw1

对于提升获得的密文 ( c , d ) ∈ C m 2 (c,d) \in C_m^2 (c,d)Cm2,将它们分别作上述的同构。我们要求私钥 s ∈ Z [ X ] s \in \mathbb Z[X] sZ[X] 落在 R m R_m Rm 的子环 R w R_w Rw 内(在同态的意义下),也就是说:
s ( X ) = ∑ i ≡ 0 ( m o d u ) s i ⋅ X i s(X) = \sum_{i\equiv0 \pmod{u}} s_i \cdot X^i s(X)=i0(modu)siXi
并且 deg ⁡ s ≤ m − 1 \deg s \le m-1 degsm1,我们简记 s ( X ) = s ( 0 ) ( Y ) s(X) = s_{(0)}(Y) s(X)=s(0)(Y),其中 Y = X u Y=X^u Y=Xu

现在,我们将这个 s ∈ Z [ X ] s \in \mathbb Z[X] sZ[X] 再视为卷积环 C m C_m Cm 中的元素,此时 s s s 就落在子环 C w C_w Cw 内(在同态的意义下),那么有:
( c + d ⋅ s ) ( X ) = ∑ k = 0 u − 1 X k ⋅ ( c ( k ) + d ( k ) s ( 0 ) ) ( Y ) = ∑ k = 0 u − 1 X k ⋅ μ ( k ) ( Y ) = μ ( m o d X m − 1 , q ) \begin{aligned} (c + d \cdot s)(X) &= \sum_{k=0}^{u-1} X^k \cdot \left(c_{(k)} + d_{(k)}s_{(0)}\right)(Y)\\ &= \sum_{k=0}^{u-1} X^k \cdot \mu_{(k)}(Y)\\ &= \mu \pmod{X^m-1,q}\\ \end{aligned} (c+ds)(X)=k=0u1Xk(c(k)+d(k)s(0))(Y)=k=0u1Xkμ(k)(Y)=μ(modXm1,q)
我们将 ( c ( k ) , d ( k ) ) ∈ C w , q 2 (c_{(k)}, d_{(k)}) \in C_{w,q}^2 (c(k),d(k))Cw,q2 视为关于私钥 s 0 ( Y ) ∈ Z [ Y ] s_{0}(Y) \in \mathbb Z[Y] s0(Y)Z[Y] 的密文,它们的相位分别是:
μ ( k ) = Δ ( G m ⋅ a ) ( k ) + δ ( G m ⋅ e ) ( k ) ∈ C w \mu_{(k)} = \Delta(G_m\cdot a)_{(k)} + \delta(G_m\cdot e)_{(k)} \in C_w μ(k)=Δ(Gma)(k)+δ(Gme)(k)Cw
这就将大环 C m C_m Cm 上的消息 ( G m ⋅ a ) ( X ) (G_m\cdot a)(X) (Gma)(X) 的密文 ( c , d ) (c,d) (c,d) 分解成了 u u u 个小环 C w C_w Cw 上的密文 ( c ( k ) , d ( k ) ) (c_{(k)},d_{(k)}) (c(k),d(k)),它们分别加密了消息 ( G m ⋅ a ) ( k ) ( Y ) (G_m\cdot a)_{(k)}(Y) (Gma)(k)(Y)。因为这是一个环同构,因此 u u u 个小密文也容易合成出单个大密文。事实上,这个环同构就是系数的置换、分区、级联,基本没有计算开销。

但是我们想要的是 R m R_m Rm 分解到 R w R_w Rw 的密文,可以再简单地取模:
( c ( k ) , d ( k ) ) ∈ C w , q 2 ↦ ( c ( k ) , d ( k ) )   m o d   Φ w ( Y ) (c_{(k)},d_{(k)}) \in C_{w,q}^2 \mapsto (c_{(k)},d_{(k)}) \bmod{\Phi_w(Y)} (c(k),d(k))Cw,q2(c(k),d(k))modΦw(Y)
把这些密文记为 ( c ~ k , d ~ k ) ∈ R w , q 2 (\tilde c_{k}, \tilde d_{k}) \in R_{w,q}^2 (c~k,d~k)Rw,q2,它们加密了消息 ( G m ⋅ a ) ( k ) ( m o d Φ w ) (G_m \cdot a)_{(k)} \pmod{\Phi_w} (Gma)(k)(modΦw),简记为 a ~ k ∈ R w \tilde a_k \in R_w a~kRw

虽然 a ~ k \tilde a_k a~k a a a 或者 a ( k ) a_{(k)} a(k) 之间的关系很复杂,但是我们考虑任意的 m m m-th 本原单位根 ζ \zeta ζ,由于 G m ( X ) = m ( m o d Φ m ( X ) ) G_m(X) = m \pmod{\Phi_m(X)} Gm(X)=m(modΦm(X)),因此有:
( G m ⋅ a ) ( ζ ) = G m ( ζ ) ⋅ a ( ζ ) = m ⋅ a ( ζ ) (G_m\cdot a)(\zeta) = G_m(\zeta) \cdot a(\zeta) = m \cdot a(\zeta) (Gma)(ζ)=Gm(ζ)a(ζ)=ma(ζ)
那么,
a ( ζ ) = m − 1 ⋅ ( G m ⋅ a ) ( ζ ) = m − 1 ⋅ ∑ k = 0 u − 1 ζ k ⋅ a ~ k ( ζ u ) a(\zeta) = m^{-1} \cdot(G_m\cdot a)(\zeta) = m^{-1} \cdot \sum_{k=0}^{u-1}\zeta^k \cdot \tilde a_k(\zeta^u) a(ζ)=m1(Gma)(ζ)=m1k=0u1ζka~k(ζu)
我们可以从 a ~ k ∈ R w , p \tilde a_k \in R_{w,p} a~kRw,p 恢复出原始消息 a ∈ R m , p a \in R_{m,p} aRm,p,确切地说:
a ( X ) = m − 1 ⋅ ∑ k = 0 u − 1 X k ⋅ a ~ k ( X u ) ∈ R m , p a(X) = m^{-1} \cdot \sum_{k=0}^{u-1}X^k \cdot \tilde a_k(X^u) \in R_{m,p} a(X)=m1k=0u1Xka~k(Xu)Rm,p
这里要求 gcd ⁡ ( m , p ) = 1 \gcd(m,p)=1 gcd(m,p)=1,此时也存在 ζ ∈ G F ( p d ) \zeta \in GF(p^d) ζGF(pd),其中 d = o r d ( p   m o d   m ) d=ord(p \bmod{m}) d=ord(pmodm) 是乘法阶。

同理,我们也可以把这些小密文 ( c ~ k , d ~ k ) ∈ R w , q 2 (\tilde c_{k}, \tilde d_{k}) \in R_{w,q}^2 (c~k,d~k)Rw,q2 重新合成出原始密文 ( c 0 , c 1 ) ∈ R m , q 2 (c_0,c_1) \in R_{m,q}^2 (c0,c1)Rm,q2,只要满足 gcd ⁡ ( m , q ) = 1 \gcd(m,q)=1 gcd(m,q)=1 即可。只需要系数的置换和级联,以及一些模乘,计算开销很小。

Construction

环切换的步骤为:

  1. Key-switch.
    • 输入密文 ( c 0 , c 1 ) ∈ R m , q 2 (c_0,c_1) \in R_{m,q}^2 (c0,c1)Rm,q2,对应的私钥是 s ∈ Z [ X ] s \in \mathbb Z[X] sZ[X],加密消息 a ∈ R m , p a \in R_{m,p} aRm,p
    • 使用 KS 过程,切换到 ( c 0 ′ , c 1 ′ ) ∈ R m , q 2 (c_0',c_1') \in R_{m,q}^2 (c0,c1)Rm,q2,它关于一个环元素 s ′ ∈ R w s' \in R_w sRw 对应的稀疏私钥 s ′ ′ ( X ) = s ′ ( X u ) s''(X)=s'(X^u) s′′(X)=s(Xu)
  2. Lift.
    • 将密文 ( c 0 ′ , c 1 ′ ) ∈ R m , q 2 (c_0',c_1') \in R_{m,q}^2 (c0,c1)Rm,q2 乘以 G m ( X ) ∈ Z [ X ] G_m(X) \in \mathbb Z[X] Gm(X)Z[X] 提升到 ( c , d ) ∈ C m , q 2 (c,d) \in C_{m,q}^2 (c,d)Cm,q2
    • 它的私钥是 s ′ ′ ∈ Z [ X ] s'' \in \mathbb Z[X] s′′Z[X],加密的消息是 G m ⋅ a ∈ C m , p G_m \cdot a \in C_{m,p} GmaCm,p
  3. Break.
    • ( c , d ) ∈ C m , q 2 (c,d) \in C_{m,q}^2 (c,d)Cm,q2 分解为 u u u 个小密文 ( c ( k ) , d ( k ) ) ∈ C w , q 2 (c_{(k)},d_{(k)}) \in C_{w,q}^2 (c(k),d(k))Cw,q2,简记 Y = X u Y=X^u Y=Xu
    • 它们的私钥是 s ′ ∈ Z [ Y ] s' \in \mathbb Z[Y] sZ[Y],各自加密 ( G m ⋅ a ) ( k ) ∈ C w , p (G_m \cdot a)_{(k)} \in C_{w,p} (Gma)(k)Cw,p
  4. Reduce.
    • 对小密文 ( c ( k ) , d ( k ) ) ∈ C w , q 2 (c_{(k)},d_{(k)}) \in C_{w,q}^2 (c(k),d(k))Cw,q2 取模,获得 ( c ~ k , d ~ k ) ∈ R w , q 2 (\tilde c_{k}, \tilde d_{k}) \in R_{w,q}^2 (c~k,d~k)Rw,q2
    • 它们的私钥是 s ′ ∈ Z [ Y ] s' \in \mathbb Z[Y] sZ[Y],各自加密 a ~ k ∈ R w , p \tilde a_k \in R_{w,p} a~kRw,p

如图所示:

在这里插入图片描述

Slot-packing

我们通常使用 SIMD 打包技术,分解得到的密文 ( c ( k ) , d ( k ) ) ∈ C w , q 2 (c_{(k)},d_{(k)}) \in C_{w,q}^2 (c(k),d(k))Cw,q2 加密的 a ~ k ∈ R w , p \tilde a_k \in R_{w,p} a~kRw,p,虽然可以恢复出原始消息 a ∈ R m , p a \in R_{m,p} aRm,p,但是 a ~ k ∈ R w , p \tilde a_k \in R_{w,p} a~kRw,p 的明文槽并非 a ∈ R m , p a \in R_{m,p} aRm,p 所编码的那些槽,因此无法对分解出的小密文直接做 SIMD 运算。

[GHPS12] 通过线性组合 a ~ k \tilde a_k a~k 来获得编码了明文槽小区块的一些小明文。对于 o r d ( p   m o d   m ) = o r d ( p   m o d   w ) = d ord(p \bmod m) = ord(p \bmod w)=d ord(pmodm)=ord(pmodw)=d 的特殊情况,可以找到 h ∈ R w , p h \in R_{w,p} hRw,p 使得 h ( τ j ) = ζ j h(\tau^{j}) = \zeta^j h(τj)=ζj,其中 ζ ∈ G F ( p d ) \zeta \in GF(p^d) ζGF(pd) m m m-th 本原单位根, τ = ζ u \tau=\zeta^u τ=ζu w w w-th 本原单位根, j ∈ S ⊆ Z m ∗ j \in S \subseteq \mathbb Z_m^* jSZm,这个子集 S S S 的大小是 ϕ ( w ) \phi(w) ϕ(w),满足 S ( m o d w ) = Z w ∗ S \pmod w = \mathbb Z_w^* S(modw)=Zw,并且乘以 p p p 封闭。

由于 w ∣ m w \mid m wm,因此 Z m ∗ \mathbb Z_m^* Zm 可以分成 ϕ ( m ) / ϕ ( w ) \phi(m)/\phi(w) ϕ(m)/ϕ(w) 个大小为 ϕ ( w ) \phi(w) ϕ(w) 的不交子集,每个子集都是 Z w ∗ \mathbb Z_w^* Zw 的代表,且乘以 p p p 封闭。把它们记作 S i ⊆ Z m ∗ S_i \subseteq \mathbb Z_m^* SiZm,各自对应 h i ∈ R w , p h_i \in R_{w,p} hiRw,p

线性组合 a i ∗ = ∑ k = 0 u − 1 h i k ⋅ a ~ k ∈ R w , p a_i^* = \sum_{k=0}^{u-1} h_i^k \cdot \tilde a_k \in R_{w,p} ai=k=0u1hika~kRw,p,对于 j ∈ S i ∩ Z m ∗ / ( p ) j \in S_i \cap \mathbb Z_m^*/(p) jSiZm/(p) 满足:
a i ∗ ( τ j ) = ∑ k = 0 u − 1 ζ j k ⋅ a ~ k ( ζ u j ) = a ( ζ j ) a_i^*(\tau^{j}) = \sum_{k=0}^{u-1} \zeta^{jk} \cdot \tilde a_k(\zeta^{uj}) = a(\zeta^j) ai(τj)=k=0u1ζjka~k(ζuj)=a(ζj)
因此 a i ∗ ∈ R w , p a_i^* \in R_{w,p} aiRw,p 编码了 a ∈ R m , p a \in R_{m,p} aRm,p 中的由 S i ∩ Z m ∗ / ( p ) S_i \cap \mathbb Z_m^*/(p) SiZm/(p) 索引的那些明文槽。对应的密文 ( c i ∗ , d i ∗ ) ∈ R w , q 2 (c_i^*,d_i^*) \in R_{w,q}^2 (ci,di)Rw,q2 容易计算。

但是对于 o r d ( p   m o d   m ) ≠ o r d ( p   m o d   w ) ord(p \bmod m) \neq ord(p \bmod w) ord(pmodm)=ord(pmodw) 的一般情况, h ∈ R w , p h \in R_{w,p} hRw,p 不一定存在。但它一定在 G F ( p d ) [ X ] / ( Φ w ( X ) ) GF(p^d)[X]/(\Phi_w(X)) GF(pd)[X]/(Φw(X)) 里边,所以明文空间需要被相应的扩展,这可以用 d d d R w , p R_{w,p} Rw,p 明文组合出来,效率很低。

Field-Switching

[GHPS13] 提出的域切换技术,它针对 slot-packing,并且考虑的是 dual RLWE 版本。

域切换采用了和环切换完全不同的思路,它采用分圆塔 K / K ′ K/K' K/K 上的迹映射:
T r K / K ′ ( a ) = ∑ i = 1 ( m o d m ′ ) τ i ( a ) Tr_{K/K'}(a) = \sum_{i=1 \pmod{m'}} \tau_i(a) TrK/K(a)=i=1(modm)τi(a)
其中 K = Q ( ζ m ) , K ′ = Q ( ζ m ′ ) K=\mathbb Q(\zeta_m), K'=\mathbb Q(\zeta_{m'}) K=Q(ζm),K=Q(ζm),以及 m ′ ∣ m m' \mid m mm,自同构 τ i : ζ m ↦ ζ m i , ∀ i ∈ Z m ∗ \tau_i: \zeta_m \mapsto \zeta_m^i, \forall i \in \mathbb Z_m^* τi:ζmζmi,iZm

R / R ′ R/R' R/R 是对应的分圆整数环,明文模数 p p p 下的明文槽分别是 F / F ′ \mathbb F/\mathbb F' F/F,槽的个数是 f , f ′ f,f' f,f。根据 CRT 同构,函数 ( F f / f ′ ) f ′ → ( F ′ ) f ′ (\mathbb F^{f/f'})^{f'} \to (\mathbb F')^{f'} (Ff/f)f(F)f 可以表示为某个 R ′ R' R-线性映射 L : R p → R p ′ L: R_p \to R_p' L:RpRp

Construction

域切换的步骤是:

  1. Switch to a small-ring secret key.
    • 把私钥切换到子环上, s ′ ∈ R ′ ⊆ R s' \in R' \subseteq R sRR
  2. Multiply by an appropriate (short) scalar.
    • 找出恰当的短元素 r ∈ R p r \in R_p rRp,构造出 R ′ R' R-线性映射 L ∨ ( a ∨ ) = T r K / K ′ ( r ⋅ a ∨ ) L^\vee(a^\vee)=Tr_{K/K'}(r \cdot a^\vee) L(a)=TrK/K(ra)
  3. Map to the small field.
    • L ∨ L^\vee L 作用到密文上
  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值