智能光计算作为近年来新兴的计算模态,具备高速、低功耗等特性,在后摩尔时代展现出远超传统硅基电子计算的通量与能效,有望解决人工智能领域的算力与功耗难题。然而,其计算任务往往局限于简单的字符分类、图像处理等。其痛点是光的计算优势被困在了不适合的电架构中,计算规模受限,无法支撑复杂大模型智能计算。
针对大规模光电智能计算难题,清华大学电子工程系方璐副教授课题组、自动化系戴琼海院士课题组,构建了智能光计算的通用传播模型,摒弃了传统电子深度计算范式,另辟蹊径,首创了分布式广度光计算架构,研制了大规模干涉-衍射异构集成芯片Taichi(“太极”),实现了160 TOPS/W的通用智能计算,相关工作发表于Science。
建立自顶向下的编码拆分-解码重构机制,将复杂智能任务化繁为简,拆分为多通道高并行的子任务,构建分布式浅层光网络对子任务分而治之,突破物理器件多层深度级联的固有计算误差。相异于电学神经网络依赖网络深度以实现复杂的计算与功能,“太极”架构源自光计算独特的“全连接”与“高并行”属性,化深度计算为广度计算,为实现规模易扩展、计算高并行、系统强鲁棒的通用智能光计算探索了新路径。
化“深”为“广”:Taichi分布式广度光计算架构
以周易典籍“易有太极,是生两仪”为启发,建立干涉-衍射联合传播模型,刻画衍射光计算大规模并行优势与干涉光计算灵活重构特性,提出衍射编码-干涉特征计算-衍射解码的融合计算方法,研制了干涉-衍射异构集成智能光芯片,实现片上大规模通用光计算。更进一