在机器人操作物体的过程中,不同传感器数据携带的噪声会对预测控制造成怎样的影响?中国人民大学高瓴人工智能学院 GeWu 实验室、朝闻道机器人和 TeleAI 最近的合作研究揭示并指出了 “模态时变性”(Modality Temporality)现象,通过捕捉并刻画各个模态质量随物体操纵过程的变化,提升不同信息在具身多模态交互的感知质量,可显著改善精细物体操纵的表现。论文已被 CoRL2024 接收并选为 Oral Presentation。 人类在与环境互动时展现出了令人惊叹的感官协调能力。以一位厨师为例,他不仅能够凭借直觉掌握食材添加的最佳时机,还能通过观察食物的颜色变化、倾听烹饪过程中的声音以及嗅闻食物的香气来精准调控火候,从而无缝地完成烹饪过程中的每一个复杂阶段。这种能力,即在执行复杂且长时间的操作任务时,灵活运用不同的感官,是建立在对任务各个阶段全面而深刻理解的基础之上的。然而,对于机器人而言,如何协调这些感官模态以更高效地完成指定的操作任务,以及如何充分利用多模态感知能力来实现可泛化的任务执行,仍是当前尚未解决的问题。我们不仅需要使模型理解任务阶段本身,还需要从任务阶段的新角度重新审视多传感器融合。在一个复杂的操纵任务中完成将任务划分为不同阶段的一系列子目标的过程中,各个模态的数据质量很可能随任务阶段而不断变化。因此,阶段转换很可能导致模态重要性的变化。除此之外,每个阶段内部也可能存在相对较小的模态质量变化。我们将这种现象总结为多传感器模仿学习的一大挑战:模态时变性(Modality Temporality)。然而,过去的方法很少关注这一点,忽视了阶段理解在多传感器融合中的重要性。本文借鉴人类的基于阶段理解的多感官感知过程,提出了一个由阶段引导的动态多传感器融合框架 MS-Bot,旨在基于由粗到细粒度的任务阶段理解动态地关注具有更高质量的模态数据,从而更