关于具身智能的视觉-语言-行动模型综述报告

1 摘要深度学习在许多领域取得了显著的成功,包括计算机视觉、自然语言处理和强化学习。这些领域中代表性的人工神经网络包括卷积神经网络、Transformer和深度Q网络。在单模态神经网络的基础上,许多多模态模型被引入来解决各种任务,例如视觉问答、图像字幕和语音识别。在具身智能中,遵循指令的机器人策略的兴起推动了一种新型的多模态模型的发展,称为视觉-语言-动作模型( Vision-Language-Action, VLA),它们的多模态能力已成为机器人学习领域的基本元素。目前研究学者们已经提出了各种方法来增强多模态模型的特征,如多样性、灵活性和泛化能力。一些模型专注于通过预训练来优化特定的组件,而其他模型旨在开发能够预测低级动作的控制策略。某些VLA作为高层任务规划器,能够将长期任务分解为可执行的子任务。在过去的几年中,大量的VLA涌现反映了具身智能的快速发展,因此,通过综述报告调查是有必要的。本报告主要介绍了VLA模型的背景和应用,总结了不同VLA模型的具体实现方法和优缺点,提出了VLA模型目前的问题和未来研究方向,最后对VLA模型的当前发展现状进行了总结。2 简介  VLA是一类旨在处理多模态输入、整合视觉、语言和动作信息的模型,这个术语由 RT-2为了解决具身智能任务提出 [1]。与聊天机器人等其他人工智能形式不同,后者通常以ChatGPT [2]为代表,具身智能需要控制物理化身并与环境交互,而机器人技术是具身智能领域最突出的一个方面。在基于语言的机器人任务中,执行的策略不仅必须能够理解语言指令,而且还要对环境进行视觉感知并生成适当行为,这就要求VLA具备多模态能力。与早期深度强化学习方法相比,基于VLA的策略在复杂环境中表现出更好的适应性、灵巧性和泛化性。这使得VLA不仅适用于工厂等受控环境,也适用于烹饪和房间清洁等日常任务。  基于预训练视觉基础模型、语言模型和视觉语言模型的成功,V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值