线性代数入门:矩阵的理解笔记

线性代数理解笔记

学习资料:
https://blog.csdn.net/myan/article/details/647511
https://blog.csdn.net/myan/article/details/649018
https://blog.csdn.net/myan/article/details/1865397

今日笑点:
这个老师对矩阵的理解真是影响了好多好多的人hhh
在这里插入图片描述
对矩阵这个枯燥的定义,我的接触仅限于大二的70分课程和考研数学对线代的22%的考察,读着三篇理解倒也没有醍醐灌顶,只是觉得这东西还能这样去理解,早上看的,晚上写这个总结的事后还可以快速回想起来才觉得真的有点意思。

博客理解

文章首先从空间的概念开始实例化,把线性空间类比成我们的生活空间:一种空间对应一类对象,线性空间中就是向量;我们生活空间中的多角度或者说初中物理中学到的参照物的概念,就可以类比为线性空间中的选择不同的基;这样我们生活中点到点的运动,就可以在线性空间中理解为向量到向量的变换,而矩阵就是在某一个参照基下对这个变换的描述,也就是线性变换的一次描述
矩阵与向量相乘就是一个向量通过一个矩阵到达另一个向量的过程。而这个变换方式在不同的基下有不同的描述,那么不同基下对这个变换过程的不同描述矩阵就是相似矩阵
第三篇在前面建立的基础上“推翻”了基础,矩阵不再是一个线性变换的描述,而是一个坐标系,如果矩阵非奇异的话那么矩阵中的一组向量就是线性无关的也就是可以作为充当坐标系的一对基,也就是说向量运动也可以看成是坐标系或者说参照物的运动。啊~运动是相对的真是个真理。
这也就解释了 Ma = Ib这样的乘法,把矩阵看成坐标系之后,矩阵乘向量就可以看作是在一个坐标系中对这个向量的描述。如果是两个矩阵相乘,就是对一个坐标系中的所有向量进行变换。

额外理解

作者论述运动等价于坐标系变换,其实可以用物理中的参照物解释,两个杯子中间有一个苹果,用“左边杯子的右边的食物”和“右边杯子的左边的水果”都可以描述这个苹果。
读完博客之后,我又去看了之后结合评论里提到的3Blue1Brown关于线性代数的视频, 这个视频和此次博客有异曲同工之妙,同样是变换为什么不用函数而用线性变换。这就暗示了要用运动来理解。
在这里插入图片描述
最后用3Blue1Brown视频开头墨菲斯的一句话结尾“很遗憾,Matrix是什么是说不清的,你必须得自己亲眼看看”。

文外:
在记录今日对线性代数的理解之前,我想先记录一下对这篇文章中提到的认真钻研了才会领略其中的美妙这一点的想法,虽然还没有正式开始做研究但对翻开《统计学习方法》已经非常抵触的我似乎找到了一些引诱自己学下去的方法,不管是量变引起质变还是坚持就有收获的大道理,从来都是要坚信万事尽头都是繁华,不做枯燥的奴隶,要让研究细致且有趣,收获今日份动力。
——11.26

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值