高等代数复习:线性空间

本篇文章适合个人复习翻阅,不建议新手入门使用

线性空间

定义和性质

定义:(线性空间)
设集合 V V V 和数域 K \mathbb{K} K,在 V V V
定义加法 + : V × V → V , ( α , β ) ↦ α + β +:V\times V\to V,(\alpha,\beta)\mapsto \alpha+\beta +:V×VV,(α,β)α+β
定义数乘 ⋅ : V × V → V , ( k , α ) ↦ k ⋅ α \cdot:V\times V\to V,(k,\alpha)\mapsto k\cdot\alpha :V×VV,(k,α)kα
上述加法和数乘满足以下性质

  1. 加法交换律
  2. 加法结合律
  3. 加法单位元
  4. 加法逆元
  5. 数乘单位元
  6. 数乘结合律
  7. 分配律1: k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
  8. 分配律2: ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα

则称 V V V 是数域 K \mathbb{K} K 上的线性空间

注:若无注明,全篇均默认 V V V 是数域 K \mathbb{K} K 上的线性空间

性质

  • 加法单位元是唯一的
  • 加法逆元是唯一的
  • 加法消去律成立
  • 0 ⋅ α = 0 0\cdot\alpha=0 0α=0
  • k ⋅ 0 = 0 k\cdot 0=0 k0=0
  • ( − 1 ) α = − α (-1)\alpha=-\alpha (1)α=α
  • k ⋅ α = 0 k\cdot\alpha=0 kα=0,则 α = 0 \alpha =0 α=0 k = 0 k=0 k=0

线性相关性与秩

线性组合,线性表出,线性相关,线性无关的定义略;线性空间 V V V 中,向量的集合称为向量族,向量的有限集合称向量组

定义:(极大无关组)
设向量族 S S S ,若 S S S 中存在一组向量 { α 1 , … , α r } \{\alpha_1,\dots,\alpha_r\} {α1,,αr} 满足

  1. α 1 , … , α r \alpha_1,\dots,\alpha_r α1,,αr 线性无关
  2. S S S 中任一向量均可用 α 1 , … , α r \alpha_1,\dots,\alpha_r α1,,αr 线性表示

则称 { α 1 , … , α r } \{\alpha_1,\dots,\alpha_r\} {α1,,αr}是向量族 S S S 的极大(线性)无关组

存在性与唯一性
S S S 是一向量组且至少包含一个非零向量,则 S S S 的极大无关组一定存在;一般来说,向量族的极大无关组不唯一

定理:(秩的概念)
A A A B B B 都是向量族 S S S 的极大线性无关组,则 A , B A,B A,B 所含的向量个数相等,称为 S S S 的秩,记为 r ( S ) r(S) r(S)

证明思路:
只需证明如下的两个引理
设向量组 A , B A,B A,B,且 A A A 中每个向量可由 B B B 线性表出
引理1:若 A A A 线性无关,则 r ( A ) ≤ r ( B ) r(A)\leq r(B) r(A)r(B)
引理2:若 A , B A,B A,B 均线性无关,且 B B B 也可被 A A A 线性表出,则 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

引理1的证明:
反证法,归纳地证明,在“ A A A 中每个向量可由 B B B 线性表出”意义下, B B B 中的 β i \beta_i βi 可被替换为 α i \alpha_i αi,由 r > s r>s r>s 推出 A A A 是线性相关的

关于秩的更多结论

  1. 两个向量组等价(即可相互线性表出)当且仅当它们有相同的秩,且一个可以被另一个线性表出
  2. 若向量组 α \alpha α 可被向量组 β \beta β 线性表出,则 r ( α ) ≤ r ( β ) r(\alpha)\leq r(\beta) r(α)r(β)

基与维数

定义:(基与维数)
设线性空间 V V V ,若 V V V 中存在线性无关的向量 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} 使得 V V V 中任一向量均可由这组向量线性表出,则称 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} V V V 的一组基,称 V V V 具有维数 n n n ,记为 d i m K V = n dim_{\mathbb{K}}V=n dimKV=n,若不存在有限个向量组成 V V V 的一组基,则称 V V V 是无限维线性空间

命题:向量组成为基的条件
n n n 维向量空间 V V V e 1 , … , e n e_1,\dots,e_n e1,,en V V V n n n 个向量,若其适合下列条件之一,则 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} V V V 的一组基

  1. e 1 , … , e n e_1,\dots,e_n e1,,en 线性无关
  2. V V V 中任一向量均可由 e 1 , … , e n e_1,\dots,e_n e1,,en 线性表出

注:这也可以作为子向量组成为原向量组极大无关组的条件

基扩张定理
n n n 维线性空间 V V V v 1 , v 2 , … , v m v_1,v_2,\dots,v_m v1,v2,,vm V V V m ( m < n ) m(m<n) m(m<n) 个线性无关的向量,又假设 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} V V V 的一组基,则必可在 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en}中选出 n − m n-m nm 个向量,使之和 v 1 , … , v m v_1,\dots,v_m v1,,vm一起组成 V V V 的一组基

证明思路
{ e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} 中必然能找到一个 e i e_i ei,加在 { v 1 , v 2 , … , v m } \{v_1,v_2,\dots,v_m\} {v1,v2,,vm}中仍线性无关;在剩下的向量组中重复这个“找”的过程,直到加到 n n n 为止

例子

  1. V 1 = { A ∈ M n ( C ) ∣ A = A ‾ ′ } V_1=\{A\in M_n(\mathbb{C})|A=\overline{A}'\} V1={AMn(C)A=A} 在矩阵加法和实数关于矩阵的数乘下成为 R \mathbb{R} R 上的线性空间,一组基为:
    { E i i , E i j + E j i ( i ≠ j ) , i E i j − i E j i ( i ≠ j ) } \{E_{ii},E_{ij}+E_{ji}(i\neq j),iE_{ij}-iE_{ji}(i\neq j)\} {Eii,Eij+Eji(i=j),iEijiEji(i=j)}
  2. V 2 = { A ∈ M n ( C ) ∣ A = − A ‾ ′ } V_2=\{A\in M_n(\mathbb{C})|A=-\overline{A}'\} V2={AMn(C)A=A} 在矩阵加法和实数关于矩阵的数乘下成为 R \mathbb{R} R 上的线性空间,一组基为:
    { i E i i , E i j − E j i ( i ≠ j ) , i E i j + i E j i ( i ≠ j ) } \{iE_{ii},E_{ij}-E_{ji}(i\neq j),iE_{ij}+iE_{ji}(i\neq j)\} {iEii,EijEji(i=j),iEij+iEji(i=j)}
  3. K \mathbb{K} K n n n 阶上三角矩阵全体,一组基: { E i j ( i ≤ j ) } \{E_{ij}(i\leq j)\} {Eij(ij)}
  4. K \mathbb{K} K n n n 阶对称矩阵全体,一组基: { E i i , E i j + E j i ( i < j ) } \{E_{ii},E_{ij}+E_{ji}(i<j)\} {Eii,Eij+Eji(i<j)}
  5. K \mathbb{K} K n n n 阶反对称矩阵全体,一组基: { E i j − E j i ( i < j ) } \{E_{ij}-E_{ji}(i<j)\} {EijEji(i<j)}

矩阵的秩

定义
m × n m\times n m×n 阶矩阵 A A A,则 A A A m m m 个行向量的秩称为行秩, n n n个列向量的秩称为列秩

定理
初等变换不改变矩阵的行秩和列秩

推论
任意矩阵的行秩等于列秩

证明思路:相抵标准型

命题
对任意秩为 r r r m × n m\times n m×n 矩阵 A A A ,总存在 m m m 阶非异阵 P P P n n n 阶非异阵 Q Q Q,使得 P A Q = ( I r O O O ) PAQ = \begin{pmatrix} I_r&O\\ O&O\\ \end{pmatrix} PAQ=(IrOOO)

推论

  • n n n 阶方阵非奇异当且仅当 A A A 满秩
  • 两个同尺寸的矩阵相抵当且仅当秩相同
  • m × n m\times n m×n 矩阵 A A A, 则 r ( A ) = r r(A)=r r(A)=r 当且仅当存在一个 r r r 阶子式不等于零,且 A A A 中任意 r + 1 r+1 r+1 阶子式(若存在)都等于零

常见计算问题的解法

  • 求矩阵的秩:用初等变换将矩阵化为阶梯型,阶梯点个数即为秩
  • 求向量组的秩:将向量组拼成一个矩阵,矩阵秩即为向量组的秩
  • 判定向量组的线性相关性:秩等于向量个数则为线性无关组,否则线性相关
  • 求向量组的极大无关组:将列向量组拼成一个矩阵,用初等行变换将矩阵化为阶梯型,求其秩 r r r ,则选出秩为 r r r 的列向量即为所求
  • 判断 β \beta β 是否能被列向量组线性表示:若 β \beta β 的加入不改变列向量组拼成矩阵的秩,则可被线性表出,否则不能。

为了思考方便,需要熟悉以下的等价形式:

命题:等价形式

设向量组 β = { β 1 , … , β n } , α = { α 1 , … , α m } \beta =\{\beta_1,\dots,\beta_n\},\alpha=\{\alpha_1,\dots,\alpha_m\} β={β1,,βn},α={α1,,αm},记 A = ( a i j ) n × m A=(a_{ij})_{n\times m} A=(aij)n×m,考虑形式(1)
{ β 1 = a 11 α 1 + a 12 α 2 + ⋯ + a 1 m α m β 2 = a 21 α 1 + a 22 α 2 + ⋯ + a 2 m α m ⋮ β n = a n 1 α 1 + a n 2 α 2 + ⋯ + a n m α m \begin{cases} \beta_1=a_{11}\alpha_1+a_{12}\alpha_2+\cdots+a_{1m}\alpha_m\\ \beta_2=a_{21}\alpha_1+a_{22}\alpha_2+\cdots+a_{2m}\alpha_m\\ \vdots\\ \beta_n=a_{n1}\alpha_1+a_{n2}\alpha_2+\cdots+a_{nm}\alpha_m\\ \end{cases} β1=a11α1+a12α2++a1mαmβ2=a21α1+a22α2++a2mαmβn=an1α1+an2α2++anmαm该方程组等价于形式(2)
β , α \beta,\alpha β,α 均为行向量组,则有
( β 1 β 2 ⋮ β n ) = A ( α 1 α 2 ⋮ α m ) \begin{pmatrix} \beta_1\\\beta_2\\\vdots\\\beta_n \end{pmatrix} =A\begin{pmatrix} \alpha_1\\\alpha_2\\\vdots\\\alpha_m \end{pmatrix} β1β2βn =A α1α2αm
β , α \beta,\alpha β,α 均为列向量组,则有
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α m ) A ′ \begin{pmatrix} \beta_1,\beta_2,\cdots,\beta_n\\ \end{pmatrix} =\begin{pmatrix} \alpha_1,\alpha_2,\cdots,\alpha_m \end{pmatrix}A' (β1,β2,,βn)=(α1,α2,,αm)A
仍记 α , β \alpha,\beta α,β 分别为向量组 α , β \alpha,\beta α,β 拼成的矩阵,则
方程组等价于形式(3)
β , α \beta,\alpha β,α 均为行向量组,则有
β = A α \beta =A\alpha β=Aα
β , α \beta,\alpha β,α 均为列向量组,则有
β = α A ′ \beta =\alpha A' β=αA
A i A_i Ai A A A 的行向量,有等价形式(4)
β \beta β 为行向量组,则有
( β 1 β 2 ⋮ β n ) = ( A 1 A 2 ⋮ A n ) α \begin{pmatrix} \beta_1\\\beta_2\\\vdots\\\beta_n \end{pmatrix} =\begin{pmatrix} A_1\\A_2\\\vdots\\A_n \end{pmatrix}\alpha β1β2βn = A1A2An α
β \beta β 为列向量组,则有
( β 1 , β 2 , ⋯   , β n ) = α ( A 1 ′ , A 2 ′ , ⋯   , A n ′ ) \begin{pmatrix} \beta_1,\beta_2,\cdots,\beta_n\\ \end{pmatrix} =\alpha\begin{pmatrix} A'_1,A'_2,\cdots,A'_n \end{pmatrix} (β1,β2,,βn)=α(A1,A2,,An)
考虑 A α = β A\alpha=\beta Aα=β
若记 A i A_i Ai A A A 的行向量, α i \alpha_i αi α \alpha α 列向量,则 形式(5) A i α j = β i j A_i\alpha_j=\beta_{ij} Aiαj=βij若记 A i A_i Ai A A A 的列向量, α i \alpha_i αi α \alpha α 行向量,则形式(6)
∑ A i α i = β \sum A_i\alpha_i=\beta Aiαi=β

文字向量组的秩的结论

  1. A A A n × m n\times m n×m 阶矩阵, B B B m × n m\times n m×n 阶矩阵,且 A B = I n AB=I_n AB=In,则 A A A 的行向量线性无关, B B B 的列向量线性无关
  2. A A A n × m n\times m n×m 阶矩阵, α \alpha α m × k m\times k m×k 阶满秩矩阵,且 β = A α \beta =A\alpha β=Aα,则 r ( A ) = r ( β ) r(A)=r(\beta) r(A)=r(β)

证明思路
1的证明:考虑等价形式(5)易证
2的证明:考虑等价形式(4)易证

同构

定义
V , U V,U V,U 是数域 K \mathbb{K} K 上的两个线性空间,若存在 V V V U U U 上的一个双射 ϕ \phi ϕ ,使得对任意 V V V 中向量 α , β \alpha,\beta α,β 以及 k ∈ K k\in\mathbb{K} kK,均有
ϕ ( α + β ) = ϕ ( α ) + ϕ ( β ) , ϕ ( k α ) = k ϕ ( α ) \phi(\alpha+\beta)=\phi(\alpha)+\phi(\beta),\phi(k\alpha)=k\phi(\alpha) ϕ(α+β)=ϕ(α)+ϕ(β),ϕ(kα)=kϕ(α)
则称 V V V U U U 同构,记为 V ≅ U V\cong U VU,称 ϕ \phi ϕ 为同构映射

命题

  • 同构映射将线性相关(无关)向量组映为线性相关(无关)向量组
  • 同构关系是等价关系:1.自反 2.对称 3.传递
  • K \mathbb{K} K上两个有限维线性空间同构当且仅当它们维数相同

坐标

定义:(坐标)
n n n 维线性空间 V V V 的一组基 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} α ∈ V \alpha\in V αV,则有
α = a 1 e 1 + ⋯ + a n e n \alpha=a_1e_1+\cdots+a_ne_n α=a1e1++anen ( a 1 , … , a n ) ′ (a_1,\dots,a_n)' (a1,,an) α \alpha α 在基 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} 下的坐标

命题
{ e 1 , … , e m } \{e_1,\dots,e_m\} {e1,,em} m m m 维线性空间 V V V 的基, α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn V V V 中向量,其在基下的坐标向量依次为 α ~ 1 , … , α ~ n \tilde{\alpha}_1,\dots,\tilde{\alpha}_n α~1,,α~n,则

  • 向量组 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn α ~ 1 , … , α ~ n \tilde{\alpha}_1,\dots,\tilde{\alpha}_n α~1,,α~n 有相同秩
  • β \beta β 可由 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn 线性表出当且仅当 β ~ \tilde{\beta} β~ 可由 α ~ 1 , … , α ~ n \tilde{\alpha}_1,\dots,\tilde{\alpha}_n α~1,,α~n 线性表出
  • α i 1 , … , α i r \alpha_{i_1},\dots,\alpha_{i_r} αi1,,αir α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn 的极大无关组 当且仅当 α ~ i 1 , … , α ~ i r \tilde{\alpha}_{i_1},\dots,\tilde{\alpha}_{i_r} α~i1,,α~ir α ~ 1 , … , α ~ n \tilde{\alpha}_1,\dots,\tilde{\alpha}_n α~1,,α~n 的极大无关组

证明
同构映射将 α 1 , … , α n \alpha_1,\dots,\alpha_n α1,,αn 的极大无关组映为 α ~ 1 , … , α ~ m \tilde{\alpha}_1,\dots,\tilde{\alpha}_m α~1,,α~m 的极大无关组

定义:(过渡矩阵)
{ e 1 , … , e n } , { f 1 , … , f n } \{e_1,\dots,e_n\},\{f_1,\dots,f_n\} {e1,,en},{f1,,fn} 是线性空间 V V V 的基,则有
{ f 1 = a 11 e 1 + ⋯ + a 1 n e n ⋮ f n = a n 1 e 1 + ⋯ + a n n e n \begin{cases} f_1=a_{11}e_1+\cdots+a_{1n}e_n\\ \vdots\\ f_n=a_{n1}e_1+\cdots+a_{nn}e_n\\ \end{cases} f1=a11e1++a1nenfn=an1e1++annen称系数矩阵的转置为从 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} { f 1 , … , f n } \{f_1,\dots,f_n\} {f1,,fn} 的过渡矩阵

命题
{ e 1 , … , e n } , { f 1 , … , f n } \{e_1,\dots,e_n\},\{f_1,\dots,f_n\} {e1,,en},{f1,,fn} 是线性空间 V V V 的基,且 α = λ 1 e 1 + ⋯ + λ n e n = u 1 f 1 + ⋯ + u n f n \alpha=\lambda_1e_1+\cdots+\lambda_ne_n=u_1f_1+\cdots+u_nf_n α=λ1e1++λnen=u1f1++unfn
( λ 1 ⋮ λ n ) ( a 11 ⋯ a n 1 ⋮ ⋮ a n 1 ⋯ a n n ) = ( u 1 ⋮ u n ) \begin{pmatrix} \lambda_1\\ \vdots\\ \lambda_n \end{pmatrix} \begin{pmatrix} a_{11}&\cdots&a_{n1}\\ \vdots&&\vdots\\ a_{n1}&\cdots&a_{nn}\\ \end{pmatrix} =\begin{pmatrix} u_1\\ \vdots\\ u_n\\ \end{pmatrix} λ1λn a11an1an1ann = u1un 当且仅当 ( a 11 ⋯ a n 1 ⋮ ⋮ a n 1 ⋯ a n n ) \begin{pmatrix} a_{11}&\cdots&a_{n1}\\ \vdots&&\vdots\\ a_{n1}&\cdots&a_{nn}\\ \end{pmatrix} a11an1an1ann 是从 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} { f 1 , … , f n } \{f_1,\dots,f_n\} {f1,,fn} 的过渡矩阵

命题
A A A 为从 { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} { f 1 , … , f n } \{f_1,\dots,f_n\} {f1,,fn} 的过渡矩阵,则从 { f 1 , … , f n } \{f_1,\dots,f_n\} {f1,,fn} { e 1 , … , e n } \{e_1,\dots,e_n\} {e1,,en} 的过渡矩阵为 A − 1 A^{-1} A1

下面举一个有趣的应用:

命题:证明 Taylor 公式
V V V 是次数不超过 n n n 的实系数多项式全体组成的线性空间,求从基 { 1 , x , x 2 , … , x n } \{1,x,x^2,\dots,x^n\} {1,x,x2,,xn} 到基 { 1 , x − a , ( x − a ) 2 , … , ( x − a ) n } \{1,x-a,(x-a)^2,\dots,(x-a)^n\} {1,xa,(xa)2,,(xa)n} 的过渡矩阵,并以此证明多项式的 Taylor 公式:
f ( x ) = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + ⋯ + f ( n ) ( a ) n ! ( x − a ) n f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n f(x)=f(a)+1!f(a)(xa)++n!f(n)(a)(xa)n其中 f ( n ) ( x ) f^{(n)}(x) f(n)(x) 表示 f ( x ) f(x) f(x) n n n 次导数

证明
过渡矩阵为
( 1 − a a 2 ⋯ ( − 1 ) n a n 0 1 − 2 a ⋯ ( − 1 ) n − 1 n a n − 1 0 0 1 ⋯ ( − 1 ) n − 2 n ( n − 1 ) 2 ! a n − 2 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 ) \begin{pmatrix} 1&-a&a^2&\cdots&(-1)^na^n\\ 0&1&-2a&\cdots&(-1)^{n-1}na^{n-1}\\ 0&0&1&\cdots&(-1)^{n-2}\frac{n(n-1)}{2!}a^{n-2}\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&1\\ \end{pmatrix} 1000a100a22a10(1)nan(1)n1nan1(1)n22!n(n1)an21 其逆矩阵即为基 { 1 , x , x 2 , … , x n } \{1,x,x^2,\dots,x^n\} {1,x,x2,,xn} 到基 { 1 , x + a , ( x + a ) 2 , … , ( x + a ) n } \{1,x+a,(x+a)^2,\dots,(x+a)^n\} {1,x+a,(x+a)2,,(x+a)n} 的过渡矩阵
( 1 a a 2 ⋯ a n 0 1 2 a ⋯ n a n − 1 0 0 1 ⋯ n ( n − 1 ) 2 ! a n − 2 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 ) \begin{pmatrix} 1&a&a^2&\cdots&a^n\\ 0&1&2a&\cdots&na^{n-1}\\ 0&0&1&\cdots&\frac{n(n-1)}{2!}a^{n-2}\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&1\\ \end{pmatrix} 1000a100a22a10annan12!n(n1)an21 f ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n f(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n f(x)=a0+a1x+a2x2++anxn ,则
( 1 a a 2 ⋯ a n 0 1 2 a ⋯ n a n − 1 0 0 1 ⋯ n ( n − 1 ) 2 ! a n − 2 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 ) ( a 0 a 1 a 2 ⋮ a n ) = ( f ( a ) f ′ ( a ) 1 ! ⋮ f ( n ) ( a ) n ! ) \begin{pmatrix} 1&a&a^2&\cdots&a^n\\ 0&1&2a&\cdots&na^{n-1}\\ 0&0&1&\cdots&\frac{n(n-1)}{2!}a^{n-2}\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&1\\ \end{pmatrix} \begin{pmatrix} a_0\\a_1\\a_2\\\vdots\\a_n\\ \end{pmatrix}= \begin{pmatrix} f(a)\\\frac{f'(a)}{1!}\\\vdots\\\frac{f^{(n)}(a)}{n!} \end{pmatrix} 1000a100a22a10annan12!n(n1)an21 a0a1a2an = f(a)1!f(a)n!f(n)(a)

子空间

子空间的定义和性质

定义:(子空间)
设线性空间 V V V V 0 V_0 V0 V V V 的非空子集,且对任意 α , β ∈ V 0 , k ∈ K \alpha,\beta\in V_0,k\in\mathbb{K} α,βV0,kK,总有 α + β ∈ V 0 \alpha+\beta\in V_0 α+βV0 k α ∈ V 0 k\alpha\in V_0 kαV0 ,则称 V 0 V_0 V0 V V V 的(线性)子空间;称 { 0 } \{0\} {0} V V V V V V 的平凡子空间

命题

  • 子空间是线性空间(在全空间的加法和数乘下)
  • V 0 V_0 V0 V V V 的非平凡子空间,则 0 < d i m V 0 < d i m V = n 0<dim V_0<dim V=n 0<dimV0<dimV=n

子空间的和与交

定义:(子空间的和与交)
V V V 的子空间 V 1 , V 2 V_1,V_2 V1,V2
子空间之交: V 1 ∩ V 2 = { v ∣ v ∈ V 1 , v ∈ V 2 } V_1\cap V_2=\{v|v\in V_1,v\in V_2\} V1V2={vvV1,vV2}
子空间之和: V 1 + V 2 = { α + β ∣ α ∈ V 1 , β ∈ V 2 } V_1+V_2=\{\alpha +\beta|\alpha\in V_1,\beta\in V_2\} V1+V2={α+βαV1,βV2}

命题
子空间之和、之交仍为子空间

命题:子空间之和之交的求法
设子空间 V 1 V_1 V1 的基为 α = { α 1 , … , α n } \alpha=\{\alpha_1,\dots,\alpha_n\} α={α1,,αn},子空间 V 2 V_2 V2 的基为 β = { β 1 , … , β m } \beta=\{\beta_1,\dots,\beta_m\} β={β1,,βm},则

  • V 1 + V 2 V_1+V_2 V1+V2 的基为 α ∪ β \alpha\cup\beta αβ 的极大无关组
  • 任取 v ∈ V 1 ∩ V 2 v\in V_1\cap V_2 vV1V2 ,设 v = x 1 α 1 + ⋯ + x n α n = ( − y 1 ) β 1 + ⋯ + ( − y m ) β m v=x_1\alpha_1+\cdots+x_n\alpha_n=(-y_1)\beta_1+\cdots+(-y_m)\beta_m v=x1α1++xnαn=(y1)β1++(ym)βm解这个线性方程组,求得 ( x 1 , … , x n , y 1 , … , y m ) (x_1,\dots,x_n,y_1,\dots,y_m) (x1,,xn,y1,,ym) 的通解后容易看出基

定义:子空间的生成
设线性空间 V V V 的子集 S S S,记 L ( S ) L(S) L(S) S S S 中向量所有可能的线性组合构成的子集,则 L ( S ) L(S) L(S) V V V 的一个子空间,称为由 S S S 生成的子空间

命题

  • L ( S ) L(S) L(S) 是包含 S S S V V V 的最小子空间
  • L ( S ) L(S) L(S) 的维数等于 S S S 中的极大无关组所含向量的个数

定理:维数公式
设线性空间的子空间 V 1 , V 2 V_1,V_2 V1,V2,则
dim ⁡ ( V 1 + V 2 ) = dim ⁡ V 1 + dim ⁡ V 2 − dim ⁡ ( V 1 ∩ V 2 ) \dim (V_1+V_2)=\dim V_1+\dim V_2-\dim(V_1\cap V_2) dim(V1+V2)=dimV1+dimV2dim(V1V2)

直和

定义:(直和)
设子空间 V 1 , … , V m V_1,\dots,V_m V1,,Vm,若 ∀ i , V i ∩ ( V 1 + ⋯ + V i − 1 + V i + 1 + ⋯ + V m ) = 0 \forall i ,V_i\cap(V_1+\cdots+V_{i-1}+V_{i+1}+\cdots+V_m)=0 i,Vi(V1++Vi1+Vi+1++Vm)=0,则称 V 1 + ⋯ + V m V_1+\cdots+V_m V1++Vm 为直和,记为 V 1 ⊕ ⋯ ⊕ V m V_1\oplus \cdots \oplus V_m V1Vm

命题:验证直和的办法

设子空间 V 1 , … , V m , V 0 = V 1 + ⋯ + V m V_1,\dots,V_m,V_0=V_1+\cdots+V_m V1,,Vm,V0=V1++Vm,下列等价

  1. V 0 = V 1 ⊕ ⋯ ⊕ V m V_0=V_1\oplus \cdots\oplus V_m V0=V1Vm 是直和
  2. ∀ 2 ≤ i ≤ m , V i ∩ ( V 1 + ⋯ + V i − 1 ) = 0 \forall 2\leq i\leq m,V_i\cap(V_1+\cdots+V_{i-1})=0 ∀2im,Vi(V1++Vi1)=0
  3. dim ⁡ ( V 1 + ⋯ + V m ) = dim ⁡ V 1 + ⋯ + dim ⁡ V m \dim (V_1+\cdots +V_m)=\dim V_1+\cdots +\dim V_m dim(V1++Vm)=dimV1++dimVm
  4. V 1 , … , V m V_1,\dots,V_m V1,,Vm 的一组基可拼成 V 0 V_0 V0 的一组基
  5. V 0 V_0 V0 中向量表示为 V 1 , … , V m V_1,\dots,V_m V1,,Vm 中向量之和时其表示唯一

定义:补空间
U U U V V V 的子空间,则存在 V V V 的子空间 W W W ,使得 V = U ⊕ W V=U\oplus W V=UW,称 W W W U U U V V V 中的补空间

证明思路:基扩张定理

定义:两个空间的外直和
设数域 K \mathbb{K} K 上的两个线性空间 U , V U,V U,V W = U × V ≜ { ( u , v ) ∣ u ∈ U , v ∈ V } W=U\times V\triangleq\{(u,v)|u\in U,v\in V\} W=U×V{(u,v)uU,vV},现在 W W W 上定义加法和数乘:
( u 1 , v 1 ) + ( u 2 , v 2 ) = ( u 1 + u 2 , v 1 + v 2 ) , k ( u , v ) = ( k u , k v ) (u_1,v_1)+(u_2,v_2)=(u_1+u_2,v_1+v_2),k(u,v)=(ku,kv) (u1,v1)+(u2,v2)=(u1+u2,v1+v2),k(u,v)=(ku,kv) W W W K \mathbb{K} K 上的线性空间,称为 U U U V V V 的外直和

陪集和商空间

定义:陪集
V V V 是数域 K \mathbb{K} K 上的线性空间, U U U V V V 的子空间,对任意的 v ∈ V v\in V vV,集合 v + U ≜ { u + v ∣ u ∈ U } v+U\triangleq \{u+v|u\in U\} v+U{u+vuU} 称为 v v v U U U-陪集

性质

  • U U U-陪集之间作为集合要么相等,要么不交
  • v + U v+U v+U V V V 的子空间当且仅当 v ∈ U v\in U vU
  • v 1 + U = v 2 + U v_1+U=v_2+U v1+U=v2+U 当且仅当 v 1 − v 2 ∈ U v_1-v_2\in U v1v2U

命题:陪集形成的线性空间
所有 U U U-陪集构成的集合 S = { v + U ∣ v ∈ V } S=\{v+U|v\in V\} S={v+UvV}上定义加法和数乘如下:
( v 1 + U ) + ( v 2 + U ) ≜ ( v 1 + v 2 ) + U , (v_1+U)+(v_2+U)\triangleq (v_1+v_2)+U, (v1+U)+(v2+U)(v1+v2)+U, k ⋅ ( v 1 + U ) ≜ k ⋅ v 1 + U k\cdot(v_1+U)\triangleq k\cdot v_1+U k(v1+U)kv1+U S S S 是一个线性空间,记为 V / U V/ U V/U,称为 V V V 关于子空间 U U U 的商空间

注:验证良定义性:即 S S S 中加法和数乘不依赖于代表元 v 1 , v 2 v_1,v_2 v1,v2 的选取

定理:子空间的补空间和商空间同构
n n n 维线性空间 V V V U U U V V V 的子空间, W W W U U U 的补空间,则存在线性同构 φ : W → V / U \varphi:W\to V/ U φ:WV/U,故有
dim ⁡ V / U = dim ⁡ V − dim ⁡ U \dim{V/ U}=\dim{V}-\dim{U} dimV/U=dimVdimU

证明思路
取补空间的一组基 { e 1 , … , e m } \{e_{1},\dots,e_{m}\} {e1,,em},验证 { e 1 + U , … , e m + U } \{e_1+U,\dots,e_m+U\} {e1+U,,em+U}是商空间 V / U V/U V/U 的一组基

解线性方程组

命题:线性方程组解的存在性与唯一性
考虑 n n n 个未知数, m m m 个方程的线性方程组, A A A 为系数矩阵, A ~ \tilde{A} A~ 为增广矩阵

  1. r ( A ) = r ( A ~ ) = n r(A)=r(\tilde{A})=n r(A)=r(A~)=n,则方程组有唯一一组解
  2. r ( A ) = r ( A ~ ) < n r(A)=r(\tilde{A})<n r(A)=r(A~)<n,则方程组有无穷多解
  3. r ( A ) ≠ r ( A ~ ) r(A)\neq r(\tilde{A}) r(A)=r(A~),则方程组无解

命题:齐次线性方程组解的结构
设齐次线性方程组 A X = 0 AX=0 AX=0,其中 A = ( a i j ) A=(a_{ij}) A=(aij) m × n m\times n m×n矩阵
r ( A ) = n r(A)=n r(A)=n ,则方程组只有零解
r ( A ) < n r(A)<n r(A)<n ,则方程组有非零解,解集构成 n n n 维列向量空间的一个 n − r n-r nr 维子空间(其基称为基础解系)

命题:非齐次线性方程组解的结构
设非齐次线性方程组 A X = β AX=\beta AX=β r ( A ) = r ( ( ~ A ) ) = r < n r(A)=r(\tilde(A))=r<n r(A)=r((~A))=r<n A X = 0 AX=0 AX=0 的基础解系为 { η 1 , … , η n − r } \{\eta_1,\dots,\eta_{n-r}\} {η1,,ηnr},又 r r r 是方程组的任一特解,则其所有解可表示为 k 1 η 1 + k 2 η 2 + ⋯ + k n − r η n − r + γ k_1\eta_1+k_2\eta_2+\cdots+k_{n-r}\eta_{n-r}+\gamma k1η1+k2η2++knrηnr+γ

参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值