利用GF-1 WFV数据估算西北地区地表反照率

利用GF-1 WFV数据估算西北地区地表反照率

研究背景

     地表反照率(LSA)是反映反射太阳辐射与入射太阳辐射的比值,是表征地表能量平衡的重要参数。LSA提供了一般气候模式中陆-气界面的边界条件。精确估算LSA对全球气候变化和极地研究至关重要。许多可操作的遥感反照率产品通常来自各种传感器,如中分辨率成像光谱仪(MODIS)、地球反射率偏振和方向性、中分辨率成像光谱仪、云和地球辐射能系统、气象卫星第二代、气象卫星、可见红外成像辐射计套件、机载可见红外成像光谱仪。它们的空间分辨率以公里量级为主,时间分辨率从日到月不等。现时流行的天气变化监测系统产品,有助加深对全球天气变化监测和探测的了解。然而,对于区域用途而言,例如,在评估城市化和土地覆盖变化引起的环境变化时,公里级分辨率LSA产品难以捕捉人类活动引起的斑块大小变化。

     随着国家高空间分辨率对地观测计划的实施,中国发射了GF-1等一系列高空间分辨率对地观测卫星,为全球陆面监测提供高精度、宽范围的空间观测服务。为了更好地利用GF系列卫星数据进行地表定量监测,需要更多高质量、高水平的地表产品数据。本研究尝试从GF-1宽视场(WFV)数据中推导出一种高质量的LSA估计算法。GF-1多光谱传感器虽然具有40°的宽视场(FOV),但只有单角度观测数据,难以获得地表BRDF特征,进一步阻碍了基于BRDF的LSA估计。采用并改进了LUT算法,本工作将集中在大气条件和陆面非常复杂的中国研究领域。

主要内容

     地表反照率是地表辐射能量平衡和地气相互作用的驱动因素之一。LSA是一个在地表能量平衡、中长期天气预报和全球变化研究中广泛应用的重要参数。GF-1宽视场(WFV)数据提供了16 m的空间分辨率和时间密集的地表观测,但仍缺乏定量估计地表参数的有效算法。生成高效的地表参数检索算法是提高数据利用能力的关键。

     本研究提出了一种基于GF-1 WFV数据的LSA检索算法。利用陆面双向反射率分布函数特征参数来表征陆面非兰伯特征。在考虑非兰伯地表的情况下,用6S辐射转移模型模拟了大气顶部(TOA)的反射率。将线性回归应用于TOA反射率,利用地表双向反射率特征参数对LSA进行模拟,建立查找表。该算法无需复杂的多步反演过程,可根据TOA反射率对LSA进行高精度估计。对西北地区不同土地覆被类型的地面测量的验证结果表明,该算法是有效的,与野外观测相比,总体均方根误差为0.036。该算法与陆地卫星反照率数据具有较好的一致性。该算法对提高GF数据利用率具有重要意义。

数据获取

1. 研究区

中国西北,地形主要由高原、盆地和山脉组成。高原和山地阻挡了潮湿的空气流动,导致了降水的缺乏和干旱的气候,形成了广阔的沙漠和戈壁沙滩的景观。西北大部分地区年降水量小于500毫米,属大陆性干旱、半干旱和高寒气候。研究区设有多个通量观测塔和气象观测塔,用于区域尺度水文及相关生态过程的监测,每个观测塔上都配有气象、辐射、蒸散发、土壤参数和植被结构参数等仪器。用荷兰Kipp & Zonen公司的CNR4净辐射计测量LSA,该辐射计安装在通量观测塔上。它包括两个关键变量:向上短波辐射和向下短波辐射。

2. GF-1 数据

GF-1卫星具有高频重访时间长、覆盖能力广、空间分辨率高等特点,适合于大面积、区域性地表监测和变化检测。数据来自中国资源卫星数据与应用中心(CCRSDA)。

3. Landsat 数据

Landsat 7/8 L1T数据从美国地质勘探局的档案中下载。在本研究中,下载了GF卫星数据对应的31个Landsat图像场景。Landsat反照率数据根据He进行估计,并用于验证相对准确性。

研究方法

1. GF尺度下的陆地表面BRDF特征描述:从USGS、先进的星载热发射和反射辐射计谱库以及中分辨率大气透射率和辐亮度码模拟数据中选取245个地表高光谱反射率数据点。用最小二乘法计算了MODIS和GF-1 WFV的带传输系数。

2. 地表反照率的计算:根据地面方向反射率特征参数估计建立查找表过程中所需的LSA,黑/白天空反照率(BSA/WSA)根据BRDF/反照率模型参数计算。

3. TOA反射率模拟:6S辐射传输模型描述了不同场景下太阳-地面目标-遥感器整个传输路径下的阳光大气图像。6S辐射传递模型中,认为大气只在垂直方向上变化,而在水平方向上保持一致,模型将地表分为均匀和非均匀Lambertian和具有定向反射特性的三种类型。

4. 附近地区建设:根据估计的LSA和TOA反射率,构造查找表。

5. 用LUT估计LSA:本文所使用的模型有通过辐射传递模型建立TOA反射率与地表反照率之间的关系,进而建立LUT;反照率由LUT计算。每张图像都有不同的太阳天顶角和视图天顶角。根据这些角度从LUT中找到相应的网格。最后,根据网格中的系数计算地表反照率。

重要图表

研究结果

      LSA数据对气候变化、农业监测、城市变化和土地资源研究都很重要。GF系列高分辨率地球观测卫星的发射以16米的空间分辨率对陆地表面进行了频繁的观测。为了提高数据利用的效率和能力,提出了一种利用高时空分辨率GF-1 WFV数据估计LSA的方法。该方法利用MODIS曲面双向反射的特征参数来表征非朗伯曲面的真实情况。采用6S辐射传递模拟模型对TOA方向反射率进行模拟,将模拟得到的TOA反射率与根据地表双向反射特性估计的LSA建立线性回归模型,构建LSA估计模型。本文提出的方法摒弃了复杂的多步反演过程,直接建立了TOA反射率与LSA之间的统计关系。然而,这种方法仍然有局限性。因为使用的是晴空数据,所以只能计算晴空反照率。

     估算结果与野外观测结果的比较表明,所有土地覆被类型的估算精度均较高,与Landsat数据相比,该方法的反照率结果更准确。这表明该方法对不同的土地覆被类型是有效的。利用GF卫星的高重访频率,估算了黑河研究区2015年的LSA时间序列,这与本区物候变化特征完全一致。此外,不同土地覆被类型的估算结果也存在轻微偏差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值