数据我已经上传至CSDN,大家直接搜索就可以!!有其他数据需求可以留言或者私信!
==================================================
一、增强葡萄病害图片数据集
关键词: 地球和自然, 农业, 中间的, 计算机视觉, 图像, 英语
描述:
使用缩放,水平翻转,垂直翻转,旋转,亮度变化和剪切来增强数据。每个级别都有1344个增强图像和1656个图像,每类总计3000张图像。这四个类别是黑色腐烂,ESCA,叶枯萎病和健康。
我使用此数据集写了一篇论文:https://doi.org/10.59720/23-251
==================================================
二、葡萄叶片ESCA(葡萄黑麻疹)图像数据集
关键词: 生物学, 植物, 农业, 计算机视觉, 图像分类
描述:
该数据集提供了与两个类别有关的葡萄叶图像的集合:从受ESCA疾病和健康叶子影响的植物中获取的不健康叶子。
==================================================
三、1600张RGB葡萄植物图像数据集
关键词: 疾病, 植物, 农业, 计算机视觉, 图像分类
描述:
该数据集由RGB颜色空间中的1600张葡萄植物图像组成。这些图像分为四类。每个班级都有400张图像
资料来源:https://figshare.com/articles/dataset/healthy_and_and_disease_affected_leaves_of_grape_plant/13083890/1
==================================================
四、葡萄检测和详细分裂图像数据集
关键词: 农业, 图像, 图像分割, YOLO, 对象检测
描述:
介绍
该数据集旨在探索对象检测和分割的领域,以其在农业中的应用方面的特定关注。主要目的是采用Yolov8和SAM技术来开发健壮的模型来检测葡萄束。
数据集说明
该数据集包括使用Yolov8体系结构的四个训练有素的模型。它包括两种单级模型,一种利用对象检测,另一种采用实例分割进行葡萄检测。此外,还有两个多级模型,能够预测和检测不同的葡萄品种。使用超级存储库(https://github.com/ultralytics/ultralytics)的大型模型对所有模型进行了训练。
数据集包括四个葡萄品种:
- 黑比诺:102张图像和标签
- 霞多丽:来自我的39张图像和标签47
- 长相思:42张图像和标签
- 黑皮诺(Pinot Gris):111个图像和标签
用于培训的总数:341
请注意,分割模型的训练总共使用了20张图像,总计为100张。
用于培训的数据集
要查看用于训练多类对象检测模型的数据集(例如火车/测试/Val文件夹),请参阅以下
数据源
数据集包含两个主要数据源。第一个来源是使用iPad Air 2 RGB相机捕获的图像集合。这些图像具有3226x2449像素的分辨率和8百万像素的质量。第二个来源由Github用户Thsant贡献,他创建了一个令人印象深刻的项目,请访问https://github.com/thsant/wgisd/tree/master。
为了标记数据,利用了先前数据集的基本模型,并使用labelimg(https://github.com/heartexlabs/labelimg)进行注释过程。重要的是要注意,来自Thsant数据集的某些注释需要修改以使其完整性。
实施步骤
数据准备涉及从“ my_sam”(https://github.com/regs08/my_sam)和“ kaggleutils”(https://github.com/regs08/kagaggleutils)使用“ my_sam”的课程和功能。
对于模型培训,采用了带有默认超参数的Yolov8体系结构。对象检测模型接受了50个训练时期,而实例分割模型进行了75个时期的培训。
从https://sement-anything.com/将任何内容(SAM)段应用于Bbox标记的数据,以生成实例分割模型的图像和相应的掩码。应用SAM后不会进一步编辑图像。
评估和推理
使用的评估指标是平均平均精度(MAP)。获得以下映射值:
单级对象检测:
-MAP50:0.85449
-MAP50-95:0.56177
多类对象检测:
-MAP50:0.85336
-MAP50-95:0.56316
单级实例分割:
-MAP50 :(未提供值)
-MAP50-95 :(未提供值)
多类实例分割:
-MAP50:0.89436
-MAP50-95:0.62785
==================================================
五、葡萄质量数字统计数据
关键词: 食物
描述:
数据集提供了有关单个葡萄样品的详细信息,包括其唯一的标识符,品种和地理起源。它还量化了评分,类别,糖含量和酸度等质量属性。记录了诸如簇体重和浆果大小之类的物理特征,以及收获日期,阳光暴露,土壤水分和降雨等环境因素。
==================================================
六、户外场景拍摄葡萄叶图像数据集
关键词: 酒精, 植物, 农业, 初学者, 分类
描述:
数据
该数据集包含我在2020年夏季使用电话相机收集的11种葡萄藤品种的叶子的照片。将照片放入文件夹中,每个文件夹都有相应品种的命名。
品种清单:
1。Auxerrois
2。赤霞珠
3。赤霞珠
4。霞多丽
5。梅洛
6。MüllerThurgau
7。黑比诺
8。雷司令
9。长相思
10。西拉
11。Tempranillo
==================================================
七、葡萄叶片分类图像数据集
关键词: 农业, 计算机科学, 计算机视觉, 深度学习, 转移学习
描述:
数据集:https://www.muratkoklu.com/datasets/
Koklu Murat(A),Lonsen M. Fahri(B),Ozkan Ilker Ali(A),Aslan M. Fatih(C),Sabanci Kadir(C)
(a)土耳其塞尔库克大学计算机工程系,土耳其科尼亚
(b)土耳其科尼亚尼克梅丁·埃尔巴卡大学电气和电子工程系
(c)土耳其卡拉曼的卡拉马诺格卢大学电气工程系
引用请求:
Koklu,M.,Lunlersen,M.F.,Ozkan,I.A.,Aslan,M.F。,&Sabanci,K。(2022)。CNN-SVM研究基于选定的葡萄叶分类的深层特征。测量,188,110425。doi:https://doi.org/10.1016/j.measurement.2021.110425
亮点
•Mobilenetv2 CNN模型对五类葡萄叶的分类。
•使用具有不同内核函数的SVM分类。
•实施用于高分类百分比的功能选择算法。
•使用CNN-SVM立方模型以最高精度进行分类。
摘要:葡萄藤的主要产物是葡萄的新鲜或加工。此外,葡萄叶每年被作为副产品收获一次。在价格和口味方面,葡萄叶的种类很重要。在这项研究中,通过使用葡萄叶的图像进行基于深度学习的分类。为此,使用特殊的自我灌输系统拍摄了500片葡萄树的图像。后来,使用数据增强方法增加到2500。该分类是使用最先进的CNN模型微调MobilenetV2进行的。作为第二种方法,从预先训练的MobilenetV2的逻辑层中提取了特征,并使用各种SVM内核进行了分类。作为第三种方法,通过Chi-Squares方法选择了从MobilenetV2的逻辑层提取的1000个特征,并降低至250。然后,使用所选功能使用各种SVM内核进行分类。最成功的方法是通过从逻辑层中提取特征并使用Chi-Squares方法降低特征来获得的。最成功的SVM内核是立方体。该系统的分类成功已确定为97.60%。据观察,尽管分类中使用的特征数量减少,但特征选择增加了分类的成功。
关键字:深度学习,转移学习,SVM,葡萄叶,叶子识别
==================================================
八、橘子与葡萄柚基础数据差异数据集(重量、直径、颜色等)
关键词: 食物
描述:
橘子与葡萄柚
分离橙子和葡萄柚的任务对人来说是相当明显的,但是即使手动观察仍然存在一些错误。该数据集采用“平均”橙色和葡萄柚的颜色,重量和直径,并生成较大的数据集,其中包含各种值,并且是“ oranges”和“葡萄柚”。
内容
数据集主要是虚构的。但是现在衡量从那里开始水果并创建人造样本似乎是足够的。
==================================================
九、葡萄串检测图像数据集
关键词: 地球和自然, 农业, 计算机视觉, 图像, YOLO, 对象检测
描述:
介绍
该数据集的目的是更好地了解对象检测及其在农业中的应用。训练有素的模型,使用Yolov8体系结构和预处理的重量,可以检测单个葡萄簇。通过检测葡萄簇,我们可以使用这些数据来构建进一步的模型来检测其他数据,例如疾病或估计收率。
数据集说明
使用I-PAD AIR2 RGB摄像机收集数据。该相机具有8兆像素,分辨率为3226x2449。该数据由〜100张图像组成,预处理后。使用labelimg注释数据。
实施步骤
①数据预处理
数据通过其边界框极端裁剪,然后分成至少1280x1280的尺寸的较小图像。(链接到代码待处理)。数据分为火车(80%)Val(10%)测试(10%)
②模型培训
模型使用了Yolov8体系结构和默认的超参数。可以在[超级文档](https://docs.ultralytics.com/modes/train/)上看到。该模型接受了35个时代的训练。
③评估和推理
1评估指标:联合(IOU)的相交,平均平均精度(地图)。这些可以在文件夹〜/splitimageStrain/single_box_grape/results.csv中看到
最佳的分数:map50:.901;MAP50-95:.669
2可以看到检测到的黑比诺葡萄的模型性能分析和可视化〜/splitimageStrain/singsimagestrain/single_box_grape/results.png
要查看预测jgs查看〜/splitimagestrain/single_box_grape2
要查看葡萄跟踪和计数的视频查看视频:grape_track_count.avi
结论
使用小型数据集可以训练Yolo模型,以检测给定图像和视频中的葡萄。未来的工作将包括和改善跟踪,细分和不同的葡萄品种。
==================================================
十、单葡萄叶片病害图像数据集
主要分为四类:
葡萄 黑腐病(1181张)
葡萄 黑美病(1384张)
葡萄 健康(424张)
葡萄叶枯病(叶斑)病(1077张)
数据我已经上传至CSDN,大家直接搜索就可以!!有其他数据需求可以留言或者私信!