逻辑回归的基本形式
逻辑回归是分类问题中最常用的一种模型,其函数形式为:
其中为参数,x为输入变量。逻辑回归通过一个逻辑分布函数
将输入变量的线性表达式的输出值映射到[0,1]区间内,使得函数值可以表示为概率。因此,逻辑回归可以用于预测二分类问题,当大于0.5时,将样本预测为正类,当小于0.5时,将样本预测为负类。
逻辑回归函数看似简单,但很多人并不清楚它的分布函数是如何推导出来的,为什么这种分布函数可以将线性模型的输出值完美地映射到[0,1]区间内?经过逻辑函数变换后的模型是否仍为线性模型?为回答这两个问题,首先介绍一下指数分布族以及广义线性回归模型的概念。
指数分布族
在统计学中,很多分布函数,如高斯分布、伯努利分布等都属于指数分布族。指数分布族的一般形式为: