逻辑回归详解(1)—逻辑分布函数的由来

本文深入解析逻辑回归模型,从基本形式出发,探讨指数分布族、广义线性模型的概念,以及如何通过广义线性模型推导逻辑分布函数。内容包括逻辑回归在二分类问题中的应用,以及验证逻辑回归满足广义线性模型的三个假设。
摘要由CSDN通过智能技术生成

逻辑回归的基本形式                             

     逻辑回归是分类问题中最常用的一种模型,其函数形式为:

                               h_{_{\theta }}(x)=\frac{1}{1+e^{^{-\theta x}}}

     其中\theta为参数,x为输入变量。逻辑回归通过一个逻辑分布函数  

                              g(x)=\frac{1}{1+e^{-x}} 

     将输入变量的线性表达式\theta x的输出值映射到[0,1]区间内,使得函数值h_{\theta }(x)可以表示为概率。因此,逻辑回归可以用于预测二分类问题,当h_{\theta }(x)大于0.5时,将样本预测为正类,当h_{\theta }(x)小于0.5时,将样本预测为负类。

     逻辑回归函数看似简单,但很多人并不清楚它的分布函数是如何推导出来的,为什么这种分布函数可以将线性模型的输出值完美地映射到[0,1]区间内?经过逻辑函数变换后的模型是否仍为线性模型?为回答这两个问题,首先介绍一下指数分布族以及广义线性回归模型的概念。

指数分布族

     在统计学中,很多分布函数,如高斯分布、伯努利分布等都属于指数分布族。指数分布族的一般形式为:                                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值