吴恩达深度学习(笔记+作业)·第四课·第二周 深度卷积网络实例

深度解析:经典网络、ResNets与Inception:计算机视觉进阶指南
本文探讨了经典网络如LeNet-5、AlexNet和VGG,重点剖析了Residual Networks(ResNets)的残差结构,以及Inception网络的模块化设计,包括1×1卷积和自动选择特征。此外,还介绍了开源实现、迁移学习策略,以及数据增强在视觉任务中的应用。

目录

一、经典网络

二、Residual Networks(ResNets)

三、Inception

四、使用开源的实现建议以及迁移学习

五、数据增强

六、计算机视觉现状


总纲

经典的网络

  • LeNet-5
  • AlexNet
  • VGG

ResNet

Inception

一、经典网络

  

  

 

二、Residual Networks(ResNets)

 

 

  

 一般前后维度设计成相同的,如果不同的话,那就添加一个w来设置成相同的维度

 

 

三、Inception

1×1网络:压缩信道 

 

 Inception的基本思想是:该网络不需要认为决定使用哪个过滤器,或是否需要池化,而是由网络自行确定这些参数,你可以为网络添加所有可能的值,然后把这些输出都连接起来,让网络自己学习它需要什么样的参数、采用哪一个滤波器

但是代价就是计算成本

 如何计算计算量:

 

 只要合理设置颈瓶层,那么既可以缩小运算规模,也不会降低网络性能

 

 但是,Inception网络层如何做到代替人工来确定卷积层中的过滤器、确定是否需要池化层等等,这个是怎么做到的呢???等看论文的时候再去了解吧,网上都没有一个比较好的解释

四、使用开源的实现建议以及迁移学习

因为论文里面的参数很难调整,即使是专业的学生也是很难复制他人的成果。

但是很多人都会将自己的研究成果开源,那么找一个开源的代码来说就很不错!!!

 迁移学习

不如从别人已经训练很久的权重的参数开始训练自己的权重!进展就会相当快!

 

 

如果你的数据集很小的话:

 

 

 如果你的数据集表较大的话:

 如果你有大量的数据的话: 

 

五、数据增强

 

 

 

 

 

 

 六、计算机视觉现状

 

 

 

 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值