信息论解法
信息论解法得不到过程,只能得到结论
老鼠只有两种结果,死或者不死,当这两种可能相等的时候,可以得到最大的信息量,log2 = 1比特。设法让每次老鼠喝水之后死活不死的可能性相等,就可以得到1比特信息量(比如如果是奇数瓶水就从无毒堆里拿一瓶没毒的补成偶数)
而1000瓶水里一瓶有毒,信息量是log1000 ≈ 9.9比特
所以只要用10只老鼠,就可以获得10比特信息,所以是10
二分法解法
第一只喝1~500瓶的水,判断出含有有毒的那500瓶,第二次喝有毒的500瓶中的250瓶……
500->250->125->62/63->31/32->15/16->7/8->3/4->1/2->1
二分法经过10步也可找到
二进制解法
因为老鼠有两种结果:死或者不死
所以用二进制来处理很合适
用二进制表示水的编号,每只老鼠记录一个比特位
第一只老鼠喝所有最高位为1的水,第二只喝所有第二位为1的水……
1023>1000>512,一共需要10只老鼠记录10位
当老鼠喝的水包括了有毒的水,这只老鼠记录的比特位就会和有毒水的这一位一致。
老鼠死为1,活则为0
若老鼠结果为:
死 死 活 活 活 死 死 死 活
则
对应的比特位情况为
1 1 0 0 0 1 1 1 0
从而得到了有毒的水的编号