这篇文章主要记录一下基本的GM(1,N)预测模型的概念、公式推导以及MATLAB代码实现,如有问题欢迎指正交流。
之前做毕设时在CSDN上看过关于GM(1,N)预测模型的代码,但是都几乎是同样的代码同样的问题,在第二个预测值上出现了预测值为0的畸变,所以我自己对程序进行了一点修改,解决了之前遇到的问题。
在对灰色GM(1,1)模型有了一定了解后,可以发现其主要针对线性数据具有较好的预测效果,并且在预测时只考虑了自变量本身的影响,而没有考虑其他外界影响因素对预测结果的影响作用,因此有了多维灰色预测模型GM(1,N),其中N表示考虑的相关因素维度。
GM(1,N)模型的预测原理与GM(1,1)类似,不同之处在于输入数据变量是n个。
GM(1,N)模型的建模过程如下:
设系统有特征数据序列:
相关因素序列:
令 (i=1,2,…,N)的1-AGO序列为Xi(1),其中
生成 的紧邻均值数列:
根据灰色理论对 建立微分方程GM(1,n):
其中,a称为发展系数, 称为驱动系数, 称为驱动项。
引入矩阵向量记号:
采用最小二乘法可求得u:
当 (i=1,2,…,N)变化幅度较小时,可得:
解得还原值:
MATLAB实现:
A=input('请输入原始特征序列:');
x0=input('请输入相关因素序列:');
M=input('请输入预测步长:');
N=1;
while N<=M
[n,m]=size(x0);
AGO=cumsum(A);
T=1;
x1=zeros(n,m+T);
for k=2:m
Z1(k)=(AGO(