多维灰色GM(1,N)预测模型及MATLAB实现

这篇文章主要记录一下基本的GM(1,N)预测模型的概念、公式推导以及MATLAB代码实现,如有问题欢迎指正交流。
之前做毕设时在CSDN上看过关于GM(1,N)预测模型的代码,但是都几乎是同样的代码同样的问题,在第二个预测值上出现了预测值为0的畸变,所以我自己对程序进行了一点修改,解决了之前遇到的问题。
在对灰色GM(1,1)模型有了一定了解后,可以发现其主要针对线性数据具有较好的预测效果,并且在预测时只考虑了自变量本身的影响,而没有考虑其他外界影响因素对预测结果的影响作用,因此有了多维灰色预测模型GM(1,N),其中N表示考虑的相关因素维度。
GM(1,N)模型的预测原理与GM(1,1)类似,不同之处在于输入数据变量是n个。
GM(1,N)模型的建模过程如下:
设系统有特征数据序列:

相关因素序列:

令 (i=1,2,…,N)的1-AGO序列为Xi(1),其中

生成 的紧邻均值数列:

根据灰色理论对 建立微分方程GM(1,n):

其中,a称为发展系数, 称为驱动系数, 称为驱动项。
引入矩阵向量记号:

采用最小二乘法可求得u:

当 (i=1,2,…,N)变化幅度较小时,可得:

解得还原值:

MATLAB实现:

A=input('请输入原始特征序列:');
x0=input('请输入相关因素序列:');
M=input('请输入预测步长:');
N=1;
while N<=M
[n,m]=size(x0);
AGO=cumsum(A);
T=1;
x1=zeros(n,m+T);

for k=2:m
    Z1(k)=(AGO(
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值