特征值与特征向量

1、定义

        在数学上,特别是线性代数中,对于一个给定的线性变换$A$,它的特征向量$v$经过这个线性变换的作用之后,得到的新向量仍然与原来的$v$保持在同一条直线上。但其长度或方向也许会改变。即

$ Av = \lambda v$

        其中$\lambda$为标量,即特征向量的长度在该线性变换下缩放的比例,称为其特征值。从向量$v_1$$Av_1$的过程,我们称之为线性变换;可以发现向量$v_1$经过$A$矩阵的线性变换的作用后,大小和方向都发生了改变。

       根据定义可知,$v_2$是矩阵$A$的特征向量,而这个缩放的比例2,就是$\lambda$$A$矩阵的特征值。 

 2、求解特征值与特征向量

$I$是一个单位矩阵,根据矩阵的理论,为了使$(A-\lambda I)v=0$有非零解,这个矩阵$A-\lambda I$的行列式必须为零。

        通过令矩阵$A-\lambda I$的行列式等于零,我们得到了两个特征值。

        有了特征值,我们可以把它代回到上面的方程中。

        得到矩阵$A$的特征值与特征向量。

3、应用

        特征值与特征向量的一个非常重要的应用就是把矩阵化成对角矩阵,它可以起到一个解耦(decouple)的作用。

        我们设一个新的矩阵$P=\begin{bmatrix}v_1 & v_2 \end{bmatrix}$$v_1$$v_2$是矩阵的特征向量,把$P$矩阵叫做坐标变换矩阵(coordinate transformation matrix),$\Lambda$为对角矩阵。

        考虑一个微分方程组的解法,在现代控制理论当中,状态空间方程的表示是由一系列的微分方程组组成的。

4、总结

        第三小节的运用很重要,在以后的课程中将具体的介绍,在很多的时候我们并不需要去解出这个微分方程,而是直接可以通过判断特征值的符号,以及它的性质,来判断整个系统的稳定性和系统的表现。

引用

【工程数学基础】1_特征值与特征向量_哔哩哔哩_bilibiliicon-default.png?t=N7T8https://www.bilibili.com/video/BV1fx41137Zm/?spm_id_from=333.999.0.0&vd_source=be41f8ea5b1d342fc4b9f7199f407ee9

  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值