Celery调用AI服务
问题引入
在AI模型预测初始化模型网络时,将模型中的参数展到内存中,如果模型过大,每次调用模型时,都对模型参数进行初始化,存在耗时较长的问题,会增加整体预测耗时,如果能设置一个全局变量保存模型参数,保证每次调用时,直接使用模型参数,会不会更好的缩短预测时间
解决方案
如果你在使用Celery调用GPU服务,并且需要将GPU模型的参数保存在全局变量中以便后续任务使用,可以考虑使用Celery的任务上下文(Context)。
Celery的任务上下文是一种机制,用于在任务之间传递数据和状态。通过使用Celery的任务上下文,可以在任务之间共享全局变量,例如GPU模型的参数。对于只需要加载一次并保存在全局变量中的GPU模型,可以在Celery worker启动时加载模型,并将模型参数保存在任务上下文中。后续任务可以从任务上下文中读取模型参数,而无需重新加载模型。
以下是一个示例代码,演示如何在Celery中调用GPU服务,并将GPU模型参数保存在任务上下文中:
pythonCopy code
import torch
from celery import Celery, Task
# 创建Celery应用程序
app = Celery('tasks', broker='pyamqp://guest@localhost//', backend='rpc://')
# 加载模型,并将模型参数保存在任务上下文中
class LoadModelTask(Task):
def __init__(self):
super().__init__()
self.model = None
def run(self):
self.model = torch.load('/path/to/model.pth')
self.app.conf.CELERY_CONTEXT['model'] = self.model
return True
# 在启动Celery worker时注册任务上下文
@app.on_after_configure.connect
def setup_global_context(sender, **kwargs):
sender.conf.CELERY_CONTEXT = {}
# 定义一个使用GPU模型的任务
@app.task
def use_model(x):
model = app.conf.CELERY_CONTEXT['model']
# 在这里使用GPU模型进行计算
return x
if __name__ == '__main__':
# 启动Celery worker
app.worker_main(argv=['worker', '--loglevel=INFO'])
问题总结
在上述代码中,我们定义了一个名为 LoadModelTask 的Celery任务,用于加载GPU模型并将模型参数保存在任务上下文中。我们还在启动Celery worker时注册了任务上下文。在使用GPU模型的任务 use_model 中,我们从任务上下文中读取模型参数,并在计算过程中使用该模型。
使用这种方法,可以确保GPU模型只被加载一次,并且可以轻松地在任务之间共享模型参数和其他全局变量。