搭建 Qwen2-VL 接口

搭建 Qwen2-VL 接口


Qwen2-VL 是一个多模态大模型,支持视觉和语言的理解与生成任务。它结合了视觉(Vision)和语言(Language)的能力,能够处理图像和文本的联合输入,并生成高质量的文本输出

1. 创建 qwen-vl 虚拟环境

使用 conda 创建一个名为 qwen-vl 的虚拟环境,并指定 Python 版本为 3.10。

conda create -n qwen-vl python=3.10

创建完成后,激活虚拟环境:

conda activate qwen-vl

2. 安装 PyTorch

安装 PyTorch 及其相关的库(torchvisiontorchaudio),并指定 CUDA 11.8 版本:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

注意事项

  • 确保你的系统上安装了与 PyTorch 兼容的 CUDA 版本(本例中为 CUDA 11.8)。
  • 如果没有 GPU,可以省略 --index-url 参数,安装 CPU 版本的 PyTorch。

3. 安装 Python 依赖

安装项目所需的 Python 依赖包,使用清华大学的镜像源以加速下载:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
requirements.txt 内容
qwen-vl-utils[decord]==0.0.8
modelscope
accelerate>=0.26.0
bitsandbytes==0.45.2
Flask==2.2.2
Werkzeug==2.2.2
安装 transformers

由于 transformers 安装较慢,可以下载压缩包并手动安装:

  1. 解压 transformers-main.zip

    unzip dist/transformers-main.zip -d dist/
    
  2. 安装解压后的 transformers

    pip install dist/transformers-main/ -i https://pypi.tuna.tsinghua.edu.cn/simple
    

4. 下载模型文件

使用 modelscope 下载 Qwen2.5-VL-7B-Instruct 模型文件,并将其缓存到当前目录:

modelscope download --model Qwen/Qwen2.5-VL-7B-Instruct --cache_dir ./

注意事项

  • 下载的模型文件会存储在 --cache_dir 指定的目录中,确保路径正确。
  • 如果下载速度较慢,可以尝试使用代理或更换网络环境。

5. Qwen-VL API 接口

qwen-vl_app.py 代码

以下是完整的 API 接口代码:

from datetime import datetime
import os
import torch
import gc
from flask import Flask, request, jsonify
from PIL import Image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
from qwen_vl_utils import process_vision_info
from modelscope import snapshot_download

# 设置环境变量以避免内存碎片化
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# 初始化 Flask 应用
app = Flask(__name__)

# 清理未使用的缓存
torch.cuda.empty_cache()

# 使用已经微调的预训练模型
model_dir = "Qwen/Qwen2.5-VL-7B-Instruct"

# 配置 4-bit 量化
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值