机器学习面试题汇总

1.gbdt和xgboost区别,决策树如何生成,xgboost如何分裂;

2.召回率、准确率怎么算,auc怎么算?

转自-可点击看详细内容
一、准确率、精确率、召回率和 F 值 是选出目标的重要评价指标。不妨看看这些指标的定义先:
(1)若一个实例是正类,但是被预测成为正类,即为真正类(True Postive TP)
(2)若一个实例是负类,但是被预测成为负类,即为真负类(True Negative TN)
(3)若一个实例是负类,但是被预测成为正类,即为假正类(False Postive FP)
(4)若一个实例是正类,但是被预测成为负类,即为假负类(False Negative FN)
下表中:1代表正类,0代表负类:
在这里插入图片描述
TP:正确的匹配数目
FP:误报,没有的匹配不正确
FN:漏报,没有找到正确匹配的数目
TN:正确的非匹配数目
准确率(正确率)=所有预测正确的样本/总的样本 (TP+TN)/总
精确率= 将正类预测为正类 / 所有预测为正类 TP/(TP+FP)(纵轴)
召回率 = 将正类预测为正类 / 所有实际为正的正类 TP/(TP+FN)(横轴)
F值 = 精确率 * 召回率 * 2 / ( 精确率 + 召回率) (F 值即为精确率和召回率的调和平均值
二、ROC曲线:接收者操作特征(receiver operating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。
纵轴:真正类率(true postive rate TPR),也叫真阳性率
横轴:假正类率(false postive rate FPR),也叫伪阳性率
由上表可得出横,纵轴的计算公式:
(1)真正类率(True Postive Rate)TPR: TP/(TP+FN), 代表分类器 预测为正类中实际为正实例占所有正实例 的比例。
(2)假正类率(False Postive Rate)FPR: FP/(FP+TN),代表分类器 预测为正类中实际为负实例 占 所有负实例 的比例。

如下图所示,(a)图中实线为ROC曲线,(深绿色)线上每个点对应一个阈值(threshold)。假设是二分类分类器,输出为每个实例预测为正类的概率。那么通过设定一个特定阈值(threshold),预测为正类的概率值 大于等于 特定阈值的为 正类,小于 特定阈值的为 负类,然后统计TP、TN、FP、FN每个类别的数目,然后根据上面的公式,就能对应的就可以算出一组 特定阈值下(FPR,TPR)的值,即 在平面中得到对应坐标点。如果这里没懂也没关系,下面有详细的例子说明。

右上角的阈值最小,对应坐标点(1,1);左下角阈值最大,对应坐标点为(0,0)。从右上角到左下角,随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。

在这里插入图片描述
横轴FPR: FPR越大,预测正类中实际负类越多。
纵轴TPR:TPR越大,预测正类中实际正类越多。
理想目标:TPR=1,FPR=0,即图中(0,1)点,此时ROC曲线越靠拢(0,1)点,越偏离45度对角线越好。
AUC(Area under Curve)
Roc曲线下的面积,介于0.1和1之间。AUC作为数值可以直观的评价分类器的好坏,值越大越好
首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值