spark运行架构及核心组件介绍

1. Spark 的运行架构

Spark 的运行架构采用 Master-Slave 模式,主要由以下部分组成:

1.1 Driver
  • 定义
    • Driver 是 Spark 应用程序的主控节点,负责任务的调度和协调
  • 功能
    • 提交应用程序。
    • 将用户代码转换为 DAG(有向无环图)。
    • 将 DAG 划分为多个 Stage,并生成 Task。
    • 将 Task 分发给 Executor 执行。
    • 收集 Executor 的执行结果并返回给用户。
  • 运行位置
    • Driver 通常运行在客户端(Client 模式)或集群的主节点(Cluster 模式)。
1.2 Executor
  • 定义
    • Executor 是 Spark 的工作节点,负责实际执行任务
  • 功能
    • 接收 Driver 分发的 Task。
    • 执行 Task,处理数据。
    • 将计算结果返回给 Driver。
    • 提供内存存储(用于缓存 RDD 数据)。
  • 运行位置
    • Executor 运行在集群的工作节点上。
1.3 Cluster Manager
  • 定义
    • Cluster Manager 是 Spark 的资源管理组件,负责分配计算资源(如 CPU、内存)
  • 功能
    • 管理集群中的节点。
    • 为 Spark 应用程序分配资源。
    • 启动 Driver 和 Executor。
  • 支持的资源管理器
    • Standalone:Spark 自带的资源管理器。
    • YARN:Hadoop 的资源管理器。
    • Mesos:通用的资源管理器。
    • Kubernetes:容器化的资源管理器。
1.4 工作流程

Spark 的运行流程如下:

  1. 提交应用程序
    • 用户通过 Spark 提交应用程序,Driver 启动。
  2. 生成 DAG
    • Driver 将用户代码解析为 DAG 图,并划分为多个 Stage。
  3. 分发 Task
    • Driver 将 Task 分发给 Executor。
  4. 执行 Task
    • Executor 执行 Task,并将结果返回给 Driver。
  5. 返回结果
    • Driver 收集结果并返回给用户。

2. Spark 的核心组件

Spark 的核心组件包括 Spark Core 和多个扩展模块,以下是详细介绍:

2.1 Spark Core
  • 定义
    • Spark Core 是 Spark 的核心模块,提供基础的分布式计算功能
  • 功能
    • RDD(Resilient Distributed Dataset):提供分布式数据集的抽象
    • DAG 调度器:负责任务的调度和执行
    • 内存管理:支持数据缓存和持久化
    • Fault Tolerance(容错):支持数据的自动恢复
  • 作用
    • 为所有扩展模块提供底层支持。
2.2 Spark SQL
  • 定义
    • Spark SQL 是 Spark 的数据处理模块,支持结构化数据的查询和操作
  • 功能
    • DataFrame 和 Dataset:提供结构化数据的抽象。
    • SQL 查询:支持使用 SQL 语法查询数据。
    • Catalyst 优化器:自动优化查询计划。
  • 作用
    • 适用于结构化数据的处理场景,如数据仓库
2.3 Spark Streaming
  • 定义
    • Spark Streaming 是 Spark 的实时数据处理模块。
  • 功能
    • DStream(Discretized Stream):将实时数据划分为小批次处理。
    • 支持多种数据源:如 Kafka、Flume、Socket 等。
    • 容错机制:支持数据丢失的自动恢复。
  • 作用
    • 适用于实时数据处理场景,如日志分析、实时监控。
2.4 MLlib
  • 定义
    • MLlib 是 Spark 的机器学习库
  • 功能
    • 提供常用的机器学习算法:如分类、回归、聚类等。
    • 支持数据预处理:如特征提取、标准化。
    • Spark Core 深度集成,支持分布式计算。
  • 作用
    • 适用于大规模机器学习场景。
2.5 GraphX
  • 定义
    • GraphX 是 Spark 的图计算库
  • 功能
    • 提供图数据的表示:如顶点和边。
    • 支持常用的图算法:如 PageRank、Shortest Path。
  • 作用
    • 适用于图数据处理场景,如社交网络分析。

3. Spark 架构图

以下是 Spark 的运行架构图:

+-------------------+
|     Driver        |
|-------------------|
| - DAG Scheduler   |
| - Task Scheduler  |
| - RDD Management  |
|-------------------|
| Cluster Manager   |
+-------------------+
        |
        v
+-------------------+     +-------------------+
|    Executor 1     |     |    Executor 2     |
|-------------------|     |-------------------|
| - Task Execution  |     | - Task Execution  |
| - Data Storage    |     | - Data Storage    |
|-------------------|     |-------------------|
| Worker Node       |     | Worker Node       |
+-------------------+     +-------------------+

4. Spark 的优势

4.1 高性能
  • 支持内存计算,减少磁盘 I/O。
  • DAG 调度器优化任务执行。
4.2 易用性
  • 提供高级 API:如 DataFrame、Dataset。
  • 支持多种语言:Scala、Java、Python、R。
4.3 扩展性
  • 支持多种资源管理器:Standalone、YARN、Mesos、Kubernetes。
  • 支持多种数据源:HDFS、Kafka、Cassandra 等。
4.4 容错性
  • RDD 支持数据自动恢复。
  • 支持任务失败的重试机制。

5. 总结

组件功能适用场景
Spark Core提供分布式计算的基础功能所有场景
Spark SQL支持结构化数据的查询和操作数据仓库、ETL、BI
Spark Streaming支持实时数据处理日志分析、实时监控
MLlib提供分布式机器学习算法大规模机器学习
GraphX支持图数据处理社交网络分析、图计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值