【基于深度学习的脑电图识别】TUH EEG 脑电图数据下载方法

数据集简介:

这个数据集包括超过 25000 个脑电图研究,包括一个神经学家对测试的解释,一个简短的病人病史和关于病人的人口统计信息,如性别和年龄;
在这里插入图片描述数据集详细介绍请移步我的这一篇博客:

https://blog.csdn.net/weixin_44936889/article/details/104652607

数据集地址:

https://www.isip.piconepress.com/projects/nedc/
(需要 f a n q i a n g,但我用热点也能打开)

打开后是这个样子:

### 使用深度学习处理EEG脑电图进行癫痫检测或预测 #### 方法概述 对于EEG脑电图的癫痫检测或预测,采用深度学习技术能够显著提升准确性并减少手动特征工程的工作量。通过构建卷积神经网络(CNNs),循环神经网络(RNNs)及其变体如长短时记忆(LSTM)单元,以及混合架构,可以有效地捕捉时间序列中的复杂模式。 #### 数据预处理 在应用任何机器学习算法之前,数据的质量至关重要。通常情况下,原始EEG记录会经历一系列清理过程以去除噪声和其他伪影[^3]。这包括但不限于: - **滤波**:移除不需要频率范围内的信号成分。 - **重采样**:调整采样率至适合后续计算的速度。 - **分割窗口化**:将连续的数据流切分为固定长度的时间片段用于训练模型。 #### 特征表示 尽管某些研究指出可以直接向深度信念网络(DBN)提供未经加工过的输入,然而多数工作还是倾向于先执行一定的转换操作来增强潜在有用的信息表达形式。例如,功率谱密度(PSD)[^2]就是一种常见的频域特性度量方式之一。 #### 架构选择与优化 针对特定应用场景挑选合适的网络拓扑结构是至关重要的一步。考虑到EEG具有高度时空关联性的特点,在此推荐几种流行的解决方案: - 卷积层配合池化机制能很好地提取局部依赖关系; - LSTM/GRU组件擅长应对长时间跨度上的动态变化规律; - 自注意力机制有助于聚焦重要时刻点而忽略无关干扰因素。 #### 实验验证 为了证明所提方案的有效性,往往需要借助公开可用的标准测试集来进行对比评估。TUH EEG Corpus就是一个很好的例子,它提供了大规模的真实世界案例供开发者们探索尝试[^1]。 ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout, LSTM def create_model(input_shape=(None, 1)): model = Sequential([ Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=input_shape), MaxPooling1D(pool_size=2), LSTM(units=100, return_sequences=True), Dropout(rate=0.5), Flatten(), Dense(units=1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值