Dense Learning based Semi-Supervised Object Detection
简介:
半监督目标检测(SSOD)旨在利用大量的未标记数据,促进目标检测器的训练和部署。虽然目前已经提出了各种基于自训练和基于一致性正则化的SSOD方法,但大多数都是基于锚框的检测器,而忽略了在许多现实应用中对无锚框检测器的要求更高的事实。
在本文中,作者打算弥补这一差距,并提出一种基于Dense Learning的无锚SSOD算法。
具体来说,作者引入了几个新技术,包括:1、自适应过滤(Adaptive Filtering)策略分配多层的准确的密集像素级伪标签;2、聚合教师(Aggregated Teacher)用于产生稳定和精确的伪标签;3、用于不同尺度和打乱图块的不确定性一致性正则化项来提高检测器的泛化能力。
在COCO和VOC上进行了大量的实验,结果表明,本文提出的DSL方法记录了新的最先进的SSOD性能,大大超过了现有的方法。
论文介绍:
目前最先进的SSOD方法是基于伪标签的方法,而大多数是基于锚框的两阶段检测器,如Faster-RCNN。具体来说,他们首先使用教师模型为未标记的图像生成伪标签,然后用有标记和未标记的图像训练一个两阶段的基于锚框的检测器。
然而,在现实应用中