【自监督深度补全】Self-Supervised Depth Completion Guided by 3D Perception and Geometry Consistency

Self-Supervised Depth Completion Guided by 3D Perception and Geometry Consistency

论文地址:https://arxiv.org/abs/2312.15263
开源代码:https://github.com/youmi-zym/CompletionFormer

摘要

本文提出了一种高精度的自监督深度补全方法,通过3D感知特征和多视几何一致性来实现。该方法使用3D感知空间传播算法与点云表示和注意力加权机制,捕获更合理的邻域特征,同时在深度传播过程中优化模型。实验结果表明,该方法在 NYU-Depth-v2 和 VOID 数据集上相比其他无监督方法表现更优,并与一些有监督方法达到竞争水平。

方法

在这里插入图片描述

A. 总体架构

本文提出了一种基于多视几何一致性的自监督框架,该框架结合了由注意力加权机制引导的3D感知空间传播网络,可以获得更高质量的深度补全结果。总体架构如图1所示:

  1. 首先,使用编码器-解码器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值