提出问题
G. Lan, Q. Li and N. Cheng, “Remaining Useful Life Estimation of Turbofan Engine Using LSTM Neural Networks,” 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 2018, pp. 1-5, doi: 10.1109/GNCC42960.2018.9019107.我能得到什么信息
得到的信息
根据提供的信息,这是一篇题为《Remaining Useful Life Estimation of Turbofan Engine Using LSTM Neural Networks》的论文,发表在2018年IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)上。
论文的作者是G. Lan、Q. Li和N. Cheng。论文的主题是使用LSTM神经网络来估计涡轮风扇发动机的剩余寿命。涡轮风扇发动机是飞机引擎的重要组成部分,准确预测其剩余寿命对于安全和维护管理至关重要。
该论文使用了LSTM神经网络(长短期记忆神经网络)来建立剩余寿命的预测模型。LSTM是一种适用于处理序列数据的循环神经网络,能够捕捉序列中的长期依赖关系,因此在处理时间序列数据和预测问题时具有一定优势。
论文的页码范围为1-5,可能包含了导言、方法、实验和结果等部分,以介绍他们提出的基于LSTM神经网络的剩余寿命预测方法,并通过实验结果进行验证和评估。
如果您对该论文的具体内容感兴趣,建议使用论文的DOI(Digital Object Identifier)进行访问。DOI是一个永久性的标识符,可以帮助您精确地找到该论文并获取完整的内容。在提供的信息中,论文的DOI是10.1109/GNCC42960.2018.9019107。您可以使用该DOI在学术搜索引擎或出版商的网站上查找该论文。