数据科学
王摇摆
办法总比困难多
展开
-
数据科学工具
它有许多强大的库和框架,如NumPy、Pandas、SciPy和scikit-learn,用于数据处理、统计分析、机器学习和可视化等任务。它提供了丰富的工具和库,用于处理图像、文本和其他结构化数据,以及进行模型部署和推断。7.== PyTorch==:PyTorch是另一个流行的深度学习框架,提供了易于使用的API和动态计算图的支持。数据科学是一门综合性的学科,涉及数据的收集、存储、处理、分析和可视化等方面。它提供了丰富的统计和图形库,如ggplot2和dplyr,用于数据处理、可视化和建模等任务。原创 2023-06-09 15:24:42 · 145 阅读 · 0 评论 -
【数据科学】库和框架如何理解?
框架(Framework):框架是一个更为完整和综合的软件结构,提供了一整套工具、库和规范,用于帮助开发人员构建应用程序或解决特定领域的问题。开发人员通过使用框架提供的API(应用程序编程接口)来编写自己的代码,并根据框架的规范和要求进行扩展和定制。库和框架都是为了提高开发效率、代码重用和软件质量而设计的工具,根据具体的开发需求和目标选择合适的库和框架对于开发人员来说非常重要。在计算机编程领域,库(Library)和框架(Framework)是两个常用的概念,它们都是用于帮助开发人员编写和组织代码的工具。原创 2023-06-09 15:25:44 · 228 阅读 · 0 评论