全连接层通常也称为隐藏层。在神经网络中,全连接层是指前一层的每一个神经元都连接到下一层的每一个神经元,也就是说,前一层的每个节点都与下一层的所有节点相连。
这样的连接方式使得全连接层能够学习到输入数据之间的复杂关系,从而提高模型的表达能力。全连接层是神经网络中最常见的一种层类型。
在一个多层神经网络中,除了输入层和输出层以外的所有层都可以是全连接层,这些层被称为隐藏层。隐藏层的作用是对输入数据进行一系列的非线性变换,从而使得模型能够学习到更加复杂的特征。
总的来说,全连接层是神经网络中非常重要的一种层类型,它负责对输入数据进行高维空间的映射,从而使得模型能够学习到复杂的特征关系。