引言
本篇文档详细说明了单目、双目、多目测距的工作原理,给出了具体的数学公式、变量定义以及详细步骤,并对每种方法的优缺点进行了分析。
1. 单目测距
1.1 单目测距原理概述
单目测距(Monocular Distance Estimation)是通过单个摄像头来估算场景中的目标深度或距离的一种方法。单目摄像头无法直接捕获深度信息,其深度估计主要依赖于场景的透视几何关系、目标物体的已知尺寸、或基于时间序列的运动特性。
单目测距的三种常见方法:
- 基于尺寸比例的测距:
- 利用物体的实际尺寸与其在图像中的投影尺寸关系来估算距离。
- 适用于目标的实际物理尺寸已知的情况。
- 基于几何关系的测距:
- 通过分析场景中的几何特征(如地平线、俯仰角)来计算距离。
- 多用于固定安装的摄像头场景。
- 基于深度学习的测距:
- 使用神经网络从图像中直接回归深度信息。
- 无需精确的相机模型,但依赖大量标注数据进行训练。
1.2 数学模型与公式推导
1.2.1 透视投影模型
单目测距的核心是针孔相机模型。针孔相机的透视投影关系如下:
X Z = x f , Y Z = y f \frac{X}{Z} = \frac{x}{f}, \quad \frac{Y}{Z} = \frac{y}{f} ZX=fx,ZY=fy
变量定义:
- ( (X, Y, Z) ):物体在相机坐标系中的三维坐标,单位为米。
- ( X ) 和 ( Y ) 分别表示物体在水平和垂直方向上的位移。
- ( Z ) 表示物体与相机的距离(深度)。
- ( (x, y) ):物体在图像平面上的像素坐标。
- ( f ):相机的焦距,单位为像素。
从上述公式可得,目标的深度 ( Z ) 表示为:
Z = f ⋅ X x , Z = f ⋅ Y y Z = \frac{f \cdot X}{x}, \quad Z = \frac{f \cdot Y}{y} Z=xf⋅X,Z=yf⋅Y
1.2.2 基于尺寸比例的测距
假设目标物体的实际高度为 ( H ),其在图像中的高度为 ( h ),则根据相似三角形原理,深度 ( Z ) 可表示为:
Z = f ⋅ H h Z = \frac{f \cdot H}{h} Z=hf⋅H
变量定义:
- ( H ):物体的实际高度,单位为米。
- ( h ):物体在图像中的高度,单位为像素。
- ( Z ):目标与相机的距离(深度),单位为米。
1.2.3 基于几何关系的测距
当摄像头的安装高度 ( h_{\text{cam}} ) 已知时,可通过俯仰角 ( \theta ) 计算目标的深度 ( Z ):
Z = h cam tan ( θ ) Z = \frac{h_{\text{cam}}}{\tan(\theta)} Z=tan(θ)hcam
变量定义:
- ( h_{\text{cam}} ):摄像头到地面的高度,单位为米。
- ( \theta ):摄像头的俯仰角,单位为弧度。
- ( Z ):目标的深度,单位为米。
1.2.4 深度学习模型测距
深度学习方法通常直接将图像输入神经网络,输出每个像素的深度值 ( Z )。此过程无需明确的相机模型。
1.3 单目测距实现步骤
1.3.1 摄像头标定
单目测距需要首先标定摄像头的内参矩阵 ( K ),其表达式为:
K = [ f x 0 c x 0 f y c y 0 0 1 ] K = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} K= fx000fy0cxcy1
其中:
- ( f_x, f_y ):相机的焦距(单位为像素)。
- ( (c_x, c_y) ):相机的主点坐标(单位为像素)。
标定步骤:
- 使用标定板拍摄多张图像。
- 提取棋盘格角点。
- 使用 OpenCV 等工具计算内参矩阵。
1.3.2 图像预处理与目标检测
- 对图像进行边缘检测(如 Canny 算法)。
- 使用目标检测算法(如 YOLO)定位目标位置。
1.3.3 深度计算
根据前述公式计算深度 ( Z )。若已知目标高度 ( H ),可直接使用公式:
Z = f ⋅ H h Z = \frac{f \cdot H}{h} Z=hf⋅H
若基于几何关系测距,则通过俯仰角计算深度:
Z = h cam tan ( θ ) Z = \frac{h_{\text{cam}}}{\tan(\theta)} Z=tan(θ)hcam
1.3.4 优化与误差处理
- 使用多帧融合降低噪声。
- 引入滤波算法(如卡尔曼滤波)优化深度结果。
1.4 单目测距优缺点分析
优点:
- 硬件成本低。
- 适用于简单场景。
缺点:
- 精度有限。
- 依赖目标尺寸和先验信息。
2. 双目测距
2.1 双目测距原理概述
双目测距(Stereo Vision)是通过两个相机从不同视角获取目标图像,并利用视差原理进行深度估算的一种方法。它模拟了人类双眼的工作方式,能够直接感知场景的深度信息,是一种广泛应用的三维重建技术。
双目测距的核心思想:
当两个摄像头的相对位置和内外参信息已知时,通过寻找同一物体在左、右图像中的匹配点(即视差点),可以利用几何关系计算目标的深度。其核心是 三角测量法,即通过已知的基线长度和视差大小推导目标深度。
双目测距主要包含以下几个步骤:
- 摄像头标定:确定双目相机的内外参。
- 图像矫正:将左右图像校正到对极线约束下,以简化匹配点搜索。
- 立体匹配:寻找左、右图像中对应的匹配点,计算视差图。
- 深度计算:根据视差值和双目相机参数计算目标的深度。
2.2 数学模型与公式推导
双目测距的数学模型基于针孔相机模型和三角测量原理。
2.2.1 针孔相机模型
针孔相机模型描述了物体在三维空间中的点 ((X, Y, Z)) 如何投影到二维图像平面上:
X Z = x f , Y Z = y f \frac{X}{Z} = \frac{x}{f}, \quad \frac{Y}{Z} = \frac{y}{f} ZX=fx,ZY=fy
这里:
- ( (X, Y, Z) ):物体在相机坐标系中的三维坐标,单位为米;
- ( (x, y) ):物体在图像平面上的像素坐标;
- ( f ):相机焦距,单位为像素;
- ( Z ):物体的深度(与相机的距离),单位为米。
从上述公式可以得出物体的深度 ( Z ) 表示为:
Z = f ⋅ X x , Z = f ⋅ Y y Z = \frac{f \cdot X}{x}, \quad Z = \frac{f \cdot Y}{y} Z=xf⋅X,Z=yf⋅Y
2.2.2 双目测距公式推导
设两台相机的基线长度(两个相机光心之间的距离)为 ( B ),一个物体在左相机图像中的像素坐标为 ( x_L ),在右相机图像中的像素坐标为 ( x_R ),则视差 ( d ) 定义为:
d = x L − x R d = x_L - x_R d=xL−xR
根据三角测量原理,目标深度 ( Z ) 的计算公式为:
Z = f ⋅ B d Z = \frac{f \cdot B}{d} Z=df⋅B
变量定义:
- ( Z ):目标深度(物体到相机的距离),单位为米;
- ( f ):相机焦距,单位为像素;
- ( B ):基线长度,单位为米;
- ( d ):视差,单位为像素;
- ( x_L ):物体在左图像中的像素坐标;
- ( x_R ):物体在右图像中的像素坐标。
2.2.3 图像矫正与对极线约束
在实际应用中,双目相机采集的左右图像可能存在一定的畸变或角度偏差。为了简化视差计算,需要对图像进行校正,使同一目标在左右图像中的对应点位于同一水平线上(满足对极线约束)。
矫正后的左右图像可以通过以下几何关系计算目标深度:
Z = f ⋅ B x L − x R Z = \frac{f \cdot B}{x_L - x_R} Z=xL−xRf⋅B
2.3 双目测距实现步骤
双目测距的实现包括以下关键步骤:
2.3.1 双目相机标定
双目相机的标定需要计算两台相机的内参、外参以及两者之间的相对位置关系(基线长度 ( B ))。具体步骤如下:
- 拍摄标定图像:利用棋盘格标定板拍摄多组左右相机的同步图像。
- 提取角点信息:对标定图像进行角点检测,提取棋盘格的特征点。
- 计算相机内参:使用多视几何算法求解相机的内参矩阵。
- 确定相机外参:通过标定图像计算两台相机之间的旋转矩阵和平移向量。
2.3.2 图像矫正与对极几何
利用相机标定结果,将左右相机图像矫正到同一视图平面,使匹配点对满足对极线约束。
2.3.3 立体匹配与视差计算
- 特征提取:对左右图像提取关键点特征(如 SIFT、ORB 特征)。
- 匹配点搜索:利用特征匹配算法寻找左右图像中的对应点。
- 生成视差图:通过计算左右图像中匹配点的像素差值生成视差图。
2.3.4 深度计算
通过公式 Z = f ⋅ B d Z = \frac{f \cdot B}{d} Z=df⋅B 计算每个像素的深度,最终生成场景的深度图。
2.4 双目测距优缺点分析
优点:
- 能够直接获取场景的深度信息,生成高密度深度图。
- 无需依赖物体的已知尺寸或其他先验信息。
缺点:
- 对摄像头标定精度和视差计算算法要求较高。
- 在光照变化或纹理稀疏的区域,视差匹配容易失败。
3. 多目测距
3.1 多目测距原理概述
多目测距(Multi-Camera Depth Estimation)是通过多个摄像头从不同视角采集图像,结合多视几何原理进行深度计算的方法。多目测距通过增加摄像头的数量,提高了深度估计的精度和鲁棒性。
多目测距的特点:
- 多基线长度:不同摄像头对同一目标物体的视差具有不同的基线长度,有助于在远距离场景中提高深度估计的分辨率。
- 多视角融合:从不同视角捕获的图像能够减少视差匹配中的模糊和遮挡问题。
- 三维重建:多目测距可以生成场景的高精度三维模型。
3.2 数学模型与公式推导
多目测距基于多视几何模型。假设有 ( N ) 台摄像头,它们的投影模型分别为:
u i = K i ⋅ [ R i ∣ t i ] ⋅ P , i = 1 , 2 , … , N \mathbf{u}_i = \mathbf{K}_i \cdot \left[ \mathbf{R}_i | \mathbf{t}_i \right] \cdot \mathbf{P}, \quad i = 1, 2, \dots, N ui=Ki⋅[Ri∣ti]⋅P,i=1,2,…,N
其中:
- u_i :第 ( i ) 台相机的图像坐标,单位为像素;
- K_i :第 ( i ) 台相机的内参矩阵;
- R_i, t_i :第 ( i ) 台相机的旋转矩阵和平移向量;
- P:三维点的空间坐标。
通过联合多个视角的信息,可以利用多视几何优化深度估计的结果。
3.3 多目测距实现步骤
- 多相机标定:对所有相机进行联合标定,计算每台相机的内外参。
- 特征匹配与视差计算:在多个视角的图像中提取特征点,并进行多视角匹配。
- 深度优化:利用多视几何原理优化深度估计结果,生成全局一致的深度图或三维模型。
3.4 多目测距优缺点分析
优点:
- 提高了深度估计的鲁棒性和精度。
- 有效解决了单目和双目测距中的遮挡问题。
缺点:
- 硬件复杂度高,成本较高。
- 数据处理量大,对计算资源要求较高。
4. 总结
本文详细介绍了单目、双目和多目测距的原理、数学模型和实现步骤。每种方法均具有不同的适用场景和技术特点,其中单目测距成本最低,双目测距平衡了精度和复杂度,而多目测距适用于高精度的三维重建任务。
特性 | 单目测距 | 双目测距 | 多目测距 |
---|---|---|---|
原理 | 使用单个摄像头,通过透视或深度学习估算深度。 | 使用两个相机,通过视差计算深度。 | 使用多个相机,通过多视几何优化深度估计。 |
焦距 | 相机焦距 ( f ) | 相机焦距 ( f ) | 各个相机的焦距 ( f_i ) |
深度计算方式 | 基于尺寸、几何关系或深度学习模型估算深度。 | 基于相机间的视差计算深度。 | 基于多个相机的视角,通过三角测量和几何优化计算深度。 |
硬件要求 | 仅需单个摄像头,成本较低。 | 需要两台相机,成本较高。 | 需要多个相机,成本较高,且需要复杂的同步与标定。 |
标定要求 | 仅需对摄像头进行内参标定。 | 需要对两个相机进行内外参标定以及相对位置标定。 | 需要对多个相机进行内外参标定,并计算相机间的相对位置。 |
视差计算 | 无视差计算,依赖单一视角。 | 计算视差 ( d = x_L - x_R ),从而得到深度。 | 利用多个视角同时进行深度估计,无单一视差计算。 |
计算复杂度 | 计算简单,但深度精度较低。 | 需要进行视差匹配,计算复杂度较高。 | 计算最复杂,需要多个视角的优化计算,适合大规模场景。 |
精度 | 精度受限,尤其在深度远离相机时精度较低。 | 相对较高,深度较近时精度较好,远离时下降较快。 | 精度高,尤其在复杂场景和大范围深度估算时。 |
深度估算能力 | 适合估算目标物体的相对深度。 | 能够精确估算目标的绝对深度。 | 适合处理复杂的深度估算任务,能够优化多个视角的结果。 |
计算结果 | 得到目标物体的估算深度。 | 得到目标物体的实际深度。 | 得到全局优化后的目标深度图。 |
精度影响因素 | 依赖相机焦距、物体尺寸、场景特征等。 | 依赖相机基线长度、视差计算精度等。 | 依赖多个视角的配准精度、相机同步性、标定精度等。 |
应用场景 | 适用于低成本、低精度的应用,如无人机、手机等。 | 适用于需要较高精度的应用,如立体视觉、机器人导航。 | 适用于高精度应用,如三维重建、自动驾驶、虚拟现实等。 |
优点 | 硬件成本低,简单易用。 | 提供较高精度,适合大多数深度估算任务。 | 提供最高精度,能够处理大规模和复杂环境。 |
缺点 | 依赖先验信息,精度受限。 | 需要标定和视差计算,硬件要求较高。 | 成本高,计算复杂,要求多个相机同步。 |
实时性 | 适用于实时场景,如移动设备上的深度估计。 | 需要较高的计算能力,适用于实时深度估计。 | 需要高性能计算设备,适用于离线或半实时深度估计。 |