联邦学习数据投毒 - Data Poisoning Attacks Against Federated Learning Systems

这篇论文探讨了针对联邦学习系统的数据投毒攻击,特别是标签翻转策略。研究发现,即使少量恶意客户端也能显著影响全局模型的性能,降低测试准确率和类别召回率。攻击效果受恶意客户端比例、类别转换选择以及参与训练的时机等因素影响。防御策略包括对模型更新进行PCA降维分析,以区分恶意和良性客户端。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记 - Data Poisoning Attacks Against Federated Learning Systems

1. 基本信息

论文标题 Data Poisoning Attacks Against Federated Learning Systems
论文作者 Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, Ling Liu
科研机构 Georgia Institute of Technology
发表会议 ESORICS 2020
摘要概括 本篇论文首次提出联邦学习有目标投毒攻击。具体而言,在联邦学习系统中,存在少量的恶意客户端发送源于错误标注数据的模型更新以实现毒化全局模型。除此之外,还研究了攻击性能的持久性以及恶意客户端的占比对攻击性能的影响。
开源代码 ht
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值