姜启源《数学建模》学习笔记 第一周

关键词

数学建模、原型、模型、计算机模拟、特点、能力培养

本书的主要目的

本书的主要目的是讨论建立数学模型的全过程。不在于介绍现实对象的数学模型是什么样子的。

什么是数学建模?

-原型和模型的概念?
-原型和模型的区别是:一个原型为了不同的目的可以由不同的模型。例如,飞机是一个原型,在展厅里的飞机模型就要在外形上逼真而不一定会飞;参加航模竞赛的飞机要具有良好的飞行能力而在外观上不必苛求。
-数学模型:

  1. 由数字、字母或其他数学符号组成的,描述现实对象数量的数学公式、图形或算法。
  2. 对于现实世界的一个特定对象,为了一特定目的,根据特有的内在规律,作出一些必要的简化模型,运用适当的数学工具,得到一个数学结构。

数学建模在实际生活的应用意义

  1. 一般工程领域:以物理学科为基础的机械、土木等工程技术领域
  2. 高新技术领域:通信、航天、微电子、自动化等
  3. 新领域:计量经济学、人口控制论、数学生态学等
  4. 社会活动:分析与设计、预报与决策、控制与优化、规划与管理

建模示例

椅子能在不平的地面上放稳吗?

如何分析实际问题对模型做出合理假设,用数学语言表示实际问题的条件和结论构成一个模型,借助数学计算工具进行模型求解。

商人们怎样过河?

套用多步决策模型,用数学语言将问题表示成模型的条件和结论,模型求解。

如何施救药物中毒?

这道题目涉及到了医学知识,需要先通过调查相关医学知识并分析才能假设模型,然后用数学语言表示条件和结论,求解模型,结合实际对模型进行分析和做出施救方案。

数学建模的主要方法和步骤

大体分为两种方法
-机理分析:对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或实际意义。
-测试分析:将研究对象看作是一个”黑箱“系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。

数学建模的一般步骤(机理分析):
数学建模的一般步骤
数学建模的全过程:
在这里插入图片描述

数学模型的特点和分类

特点:逼真性和可行性、渐进性、强健性、可转移性、非预测性、条理性、技艺性、局限性
分类:按模型的应用领域、按建立模型的数学方法、按模型的表现特性、按建模的目的、对模型结构的了解程度。

数学模型的特点和分类在往后学习过程中逐渐领会。

培养数学建模的能力

关键词:数学知识、各种实际知识、足够的经验,丰富的想象力、敏锐的洞察力、类比方法、理想化方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值