《数学建模》第一章读书笔记
关键词
数学建模、原型、模型、计算机模拟、特点、能力培养
本书的主要目的
本书的主要目的是讨论建立数学模型的全过程。不在于介绍现实对象的数学模型是什么样子的。
什么是数学建模?
-原型和模型的概念?
-原型和模型的区别是:一个原型为了不同的目的可以由不同的模型。例如,飞机是一个原型,在展厅里的飞机模型就要在外形上逼真而不一定会飞;参加航模竞赛的飞机要具有良好的飞行能力而在外观上不必苛求。
-数学模型:
- 由数字、字母或其他数学符号组成的,描述现实对象数量的数学公式、图形或算法。
- 对于现实世界的一个特定对象,为了一特定目的,根据特有的内在规律,作出一些必要的简化模型,运用适当的数学工具,得到一个数学结构。
数学建模在实际生活的应用意义
- 一般工程领域:以物理学科为基础的机械、土木等工程技术领域
- 高新技术领域:通信、航天、微电子、自动化等
- 新领域:计量经济学、人口控制论、数学生态学等
- 社会活动:分析与设计、预报与决策、控制与优化、规划与管理
建模示例
椅子能在不平的地面上放稳吗?
如何分析实际问题对模型做出合理假设,用数学语言表示实际问题的条件和结论构成一个模型,借助数学计算工具进行模型求解。
商人们怎样过河?
套用多步决策模型,用数学语言将问题表示成模型的条件和结论,模型求解。
如何施救药物中毒?
这道题目涉及到了医学知识,需要先通过调查相关医学知识并分析才能假设模型,然后用数学语言表示条件和结论,求解模型,结合实际对模型进行分析和做出施救方案。
数学建模的主要方法和步骤
大体分为两种方法:
-机理分析:对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或实际意义。
-测试分析:将研究对象看作是一个”黑箱“系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。
数学建模的一般步骤(机理分析):
数学建模的全过程:
数学模型的特点和分类
特点:逼真性和可行性、渐进性、强健性、可转移性、非预测性、条理性、技艺性、局限性
分类:按模型的应用领域、按建立模型的数学方法、按模型的表现特性、按建模的目的、对模型结构的了解程度。
数学模型的特点和分类在往后学习过程中逐渐领会。
培养数学建模的能力
关键词:数学知识、各种实际知识、足够的经验,丰富的想象力、敏锐的洞察力、类比方法、理想化方法