Srassen矩阵乘法 矩阵乘法的传统做法的复杂度:O(n^3) 使用分治法的方法跟处理大整数乘法的做法一致,就是拆分矩阵,最后合并。只不过这次我们是将矩阵分割为几个大小相等的子矩阵,具体如下: 这里的A,B,C都代指矩阵块,而非矩阵中的元素。 显然其复杂度仍然是O(n^3) 为了降低复杂度我们仍选择用加法来替代乘法,只不过这次的元素将比大整数乘法中复杂得多。 此时的复杂度O(n^(log7))=O(n^(2.81)) 据研究,目前最好的计算时间上界是O(n^2.376)