递归与分治之Srassen矩阵乘法

Srassen矩阵乘法

矩阵乘法的传统做法的复杂度:O(n^3)

使用分治法的方法跟处理大整数乘法的做法一致,就是拆分矩阵,最后合并。只不过这次我们是将矩阵分割为几个大小相等的子矩阵,具体如下:
在这里插入图片描述
在这里插入图片描述
这里的A,B,C都代指矩阵块,而非矩阵中的元素。

显然其复杂度仍然是O(n^3)

为了降低复杂度我们仍选择用加法来替代乘法,只不过这次的元素将比大整数乘法中复杂得多。
在这里插入图片描述
此时的复杂度O(n^(log7))=O(n^(2.81))

据研究,目前最好的计算时间上界是O(n^2.376)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值