给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:“abc” 输出:3 解释:三个回文子串: “a”, “b”, “c” 示例 2:
输入:“aaa” 输出:6 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/palindromic-substrings
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
1.利用暴力法,遍历所有以该字符为中心点的字符串是否为回文串。
class Solution {
public:
int countSubstrings(string s) {
int n=s.size();
int num=0;
for(int i=0;i<n;i++)//遍历以该字符为中心的前后字符是否相等
{
for(int j=0;j<=1;j++)//当j为0时 left 与right指向同一个中心点,这是中心点是一个的情况 当j=1时 这是中心点为两个
{
int left=i;//左指针
int right=i+j;//右指针
while(left>=0&&right<n&&s[left]==s[right])
{
num++;
left--;//左右指针平移
right++;
}
}
}
return num;
}
};
2.动态规划
利用dp[i][j]记录从i到j是否是回文串,如果i==j 则dp是真,如果s[i]==s[j]且dp[i+1][j-1]是真(也就是当前字符串左右往里缩一位的字符串是否是回文串)
则dp为真
class Solution {
public:
int countSubstrings(string s) {
int n=s.size();
if(n<=1)return n;
int count=0;
vector<vector<bool>>dp(n+1,vector<bool>(n+1,false));
for(int i=n-1;i>=0;i--)
{
for(int j=i;j<n;j++)
{
if(i==j)//如果是自己 则真
{
dp[i][j]=true;count++;
}
else if(s[i]==s[j])//如果发现相等字符
{
if(dp[i+1][j-1]||i==j-1)//且满足 夹在中间的字符串也是回文串,或者两个字符相邻没有夹在中间的字符串
{
count++;
dp[i][j]=true;
}
}
}
}
return count;
}
};