机器学习实战(二)——k-近邻算法(KNN)

2.1 k-近邻算法概述

简单的说,k-近邻算法采用测量不同特征值之间的距离方法进行分类

  • 优点:精度高、对异常值不敏感、无数据输入假定
  • 缺点:计算复杂度高、空间复杂度高
  • 适用数据范围:数值型和标称型
  • 数值型:数值型目标变量则可以从无限的数值集合中取值,如0.100,42.001等 (数值型目标变量主要用于回归分析)
  • 标称型: 标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)

k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

举例:利用k-近邻算法分类爱情片和动作片
图2-1显示了5部动作电影的打斗和接吻镜头个数,假如有一部未看过的电影,可以使用KNN来确定其为爱情片还是动作片。
在这里插入图片描述
图中的?是该未知电影出现的镜头数图形化展示,具体数字见表2-1
在这里插入图片描述
通过计算未知电影与样本集中其他电影的距离,可以判断其类型。
在这里插入图片描述
按照距离递增排序,可以找到k个距离最近的电影,假设k=3,则距离最近的全是爱情片,可以判断其为爱情片。

k-近邻算法的一般流程:

  • 1.计算已知类别数据集中的点与当前点之间的距离;
  • 2.按照距离递增次序排序;
  • 3.选取与当前点距离最小的k个点;
  • 4.确定前k个点所在类别的出现频率;
  • 5.返回前k个点所出现频率最高的类别作为当前点的预测分类
    在这里插入图片描述

距离度量:
在这里插入图片描述
在这里插入图片描述

2.1.1 准备:使用python导入数据

from numpy import *
import operator  # 导入运算符模块

# 创建数据集和标签的函数
def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels


if __name__ == '__main__':
    group, labels = createDataSet()

    print(group)
    print(labels)

结果:

[[ 1.   1.1]
 [ 1.   1. ]
 [ 0.   0. ]
 [ 0.   0.1]] 
 ['A', 'A', 'B', 'B']

2.1.2 从文本文件中解析数据
利用k-近邻算法将每组数据划分到某个类中,其伪代码如下:

对未知类别属性的数据集中的每个点依次执行以下操作:

计算已知类别数据集中的点与当前点之间的距离
按照距离递增次序排序
选取与当前点距离最小的k个点
确定前k个点所在类别的出现频率
返回前k个点出现频率最高类别作为当前点的预测分类

import numpy as np
import operator

"""
函数说明:KNN算法,文本分类

Parameters:
    inX:用于分类的数据(测试集)
    dataSet:用于训练的数据(训练集)
    labels:分类标签
    k:kNN算法参数,选择距离最小的k个点
    
returns:
    分类结果

modify:
    2018-03-08
    
"""

def classify0(inX,dataSet,labels,k):
    #numpy函数shape[0]返回dataSet行数
    dataSetSize=dataSet.shape[0]
    #在列向量方向上重复inX一次(横向),在行向量方向上重复inX共dataSetSize次(纵向)
    #numpy.tile([0,0],(1,1))#在列方向上重复[0,0]1次,行1次  >>>array([[0, 0]])
    diffMat=np.tile(inX,(dataSetSize,1))-dataSet
    #二维特征相减后平方
    sqDiffMat=diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances=sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances=sqDistances**0.5
    
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices=distances.argsort()
    #定一个记录类别次数的字典
    classCount={}

    for i in range(k):
        #取出前k个元素的类别
        voteIlabel=labels[sortedDistIndices[i]]
        #计算类别次数
        # dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1

    #key=operator.items(1)根据字典的值进行排序
    #key=operator.items(0)根据字典的键值进行排序
    #reverse降序排序字典
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]


其中,标签向量的元素数目和矩阵dataSet行数相同,上述程序中使用欧氏距离公式,计算两个向量点之间的距离。
在这里插入图片描述
整体程序示例:

结果:
```python
import numpy as np
import operator

"""
函数说明:KNN算法,文本分类

Parameters:
    inX:用于分类的数据(测试集)
    dataSet:用于训练的数据(训练集)
    labels:分类标签
    k:kNN算法参数,选择距离最小的k个点
    
returns:
    分类结果

modify:
    2018-03-08
    
"""
def createDataSet():
    group = np.array([[1, 101], [5, 89], [108, 0], [108, 5]])
    labels = ['爱情片','爱情片', '动作片', '动作片']
    return group, labels

def classify0(inX,dataSet,labels,k):
    #numpy函数shape[0]返回dataSet行数
    dataSetSize=dataSet.shape[0]
    #在列向量方向上重复inX一次(横向),在行向量方向上重复inX共dataSetSize次(纵向)
    #numpy.tile([0,0],(1,1))#在列方向上重复[0,0]1次,行1次  >>>array([[0, 0]])
    diffMat=np.tile(inX,(dataSetSize,1))-dataSet
    #二维特征相减后平方
    sqDiffMat=diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances=sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances=sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值

    sortedDistIndices=distances.argsort()
    #定一个记录类别次数的字典
    classCount={}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel=labels[sortedDistIndices[i]]
        #计算类别次数
        # dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1

    #key=operator.items(1)根据字典的值进行排序
    #key=operator.items(0)根据字典的键值进行排序
    #reverse降序排序字典
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

if __name__ == '__main__':
    #创建数据集
    group, labels = createDataSet()
    #测试集
    test = [101,20]
    #kNN分类
    test_class = classify0(test, group, labels, 3)
    #打印分类结果
    print(test_class)

输出:

动作片

看到这里,有人可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的.

分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。不同的算法在不同数据集上的表现可能完全不同。

为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率-分类器给出错误结果的次数除以测试执行的总数。

错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值