在商业智能BI项目中,我们经常讲到数据仓库中的指标和维度,并且看的很重,所以有些人可能比较疑惑为什么数据仓库会和指标、维度扯上关系,到底什么是指标、什么是维度,能不能用最简单通俗的方式介绍它们?
指标、维度是什么
简单来说,在商业智能BI项目数据仓库中,维度就是看数据的角度,被看的数据就是指标。
维度 - 派可数据商业智能BI可视化分析平台
比如:我想看2020年北京地区某品牌电脑的销售量、销售额和毛利。这里面的2020年、北京地区、某品牌电脑就是维度,分别代表了年维度、区域维度和品牌维度。看的是什么数据呢?就是销售量、销售额和毛利,这三个数据就是被看的指标。
模型是什么
同样参照前边提到的例子,这样的一个问题就构成了一个简单的分析模型,分别由年、区域、品牌三个维度以及销售量、销售额、毛利三个指标组成。当然如果需要从其它维度来看这些指标,在构建这个分析模型的时候就可以把这些分析的角度都加进去,形成一个相对比较全面的分析模型。
分析模型 - 派可数据商业智能BI可视化分析平台
在这个分析模型中,维度可以任意搭配组合,比如只想知道2019年山东地区的销售量、销售额,实际上就只用到了这个分析模型中的两个维度和两个指标,前台的分析就会根据用户所选择的维度和指标组合相应的 SQL 查询语句到后台数据仓库中查询,并将查询的结果返回到前端页面来渲染并呈现出最后所需要的结果。
这个 SQL 基本的格式就是 SELECT SUM(销售量)、SUM(销售额)、FROM(模型)、GROUP BY(时间、区域),时间过滤条件就是2019年,区域过滤条件就是山东地区。
如果只想知道2020年全年的销售量、销售额,还是刚才的那个 SQL 语句,只不过在GROUP BY 的时候就只会 GROUP BY 时间这个维度,时间过滤条件就是 2020年。
数据可视化 - 派可数据商业智能BI可视化分析平台
所以,分析维度和分析指标在这个模型中是可以灵活的组织搭配,动态的组织SQL查询反查数据分析模型,从数据分析模型中提取查询结果返回到前端页面,这就是 商业智能BI 分析的基本原理。
喜欢我们内容的朋友,欢迎点赞收藏支持!对派可数据感兴趣的可加派小可微信、咨询派可官网电话,关注派可数据公众号!