A = L U A=LU A=LU
对矩阵 A A A做 L U LU LU分解(不考虑行交换)
A = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} A=⎣⎢⎢⎡a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44⎦⎥⎥⎤
第一步,构造矩阵 M 1 M_{1} M1
M 1 = [ 1 0 0 0 − l 21 1 0 0 − l 31 0 1 0 − l 41 0 0 1 ] M_{1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ -l_{21} & 1 & 0 & 0 \\ -l_{31} & 0 & 1 & 0 \\ -l_{41} & 0 & 0 & 1 \end{matrix} \right] M1=⎣⎢⎢⎡1−l21−l31−l41010000100001⎦⎥⎥⎤
其中 l i 1 = a i 1 a 11 , i = 2 , 3 , 4. \displaystyle l_{i1} =\frac{a_{i1}}{a_{11}}, i = 2, 3, 4. li1=a11ai1,i=2,3,4. 用矩阵 M 1 M_{1} M1左乘 A A A
M 1 A = [ a 11 a 12 a 13 a 14 0 a 22 ′ a 23 ′ a 24 ′ 0 a 32 ′ a 33 ′ a 34 ′ 0 a 42 ′ a 43 ′ a 44 ′ ] M_{1}A = \left[ \begin{matrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a'_{22} & a'_{23} & a'_{24} \\ 0 & a'_{32} & a'_{33} & a'_{34} \\ 0 & a'_{42} & a'_{43} & a'_{44} \end{matrix} \right] M1A=⎣⎢⎢⎡a11000a12a22′a32′a42′a13a23′a33′<