1. 大规模文本数据集
大模型数据的核心是庞大的文本数据集,这些数据集通常包含来自多个领域的数据,用于提升模型的泛化能力。以下是一些常见的大型文本数据集:
1.1 Common Crawl
- 特点:Common Crawl是一个大规模的开源网页抓取数据集,每个月都会更新,包含了从互联网上抓取的海量网页内容,涵盖新闻、博客、论坛、科研论文等多种内容。
- 用途:适合训练通用的自然语言处理模型,如GPT类的生成模型。
- 优点:数据量非常庞大,包含了多种语言和多领域的信息,有助于模型学习多样化的语言模式。
- 缺点:数据质量不一,可能包含噪声,需要进行额外的清洗和筛选。
1.2 Wikipedia
- 特点:Wikipedia是一个结构化的百科全书数据集,包含了世界各地的知识、词条和文章。
- 用途:适合用于训练知识丰富、领域广泛的语言模型,通常用于生成类任务(如问答)和知识图谱构建。
- 优点:数据质量高,包含了大量有用的背景知识,适合训练模型进行知识问答、命名实体识别等任务。
- 缺点:相较于Common Crawl,数据量较小,且主要以知识性、描述性文本为主。

最低0.47元/天 解锁文章
1918

被折叠的 条评论
为什么被折叠?



