1. Xba 抽样分布与检验效能之间的关系
2. z分布或t分布曲线
3.计算 z score (z值)或t score(t值)
基于当前零假设和当前样本,计算 z score (z值)或t score(t值),通过z值 / t值及比该数值更极端的值出现的概率来代表抽到目前这个样本及更极端的样本的概率。其计算公式如下:
4. t分布临界值表
https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
5. Student-t分布
当我们用样本标准差替换时,此时经过变换的Y(注意,这里的Y是X的样本均数)就不再服从标准正态分布,而是我们今天的主角——t分布。
因此,要知道t分布是针对样本均数而言的!
经过变换之后的Y称作“t 值”,学名叫“t 统计量”。记做t ~ t(v),这种变换也就称为t变换,这里v代表自由度。
t 分布和标准正态分布的区别在于:
标准正态分布只有一条,它的确定的,不动的。而t分布理论上是有无数多条,即给定自由度(v),就有确定的t分布曲线与之对应。
6. 选择合适的检验方式
7. 两独立样本t检验
两独立样本T检验:用于检验两个独立样本是否来自具有相同均值的总体,即检验两个正态分布总体的均值是否相等。