统计学学习笔记——(10)t检验

本文介绍了在未知总体标准偏差的情况下如何使用t检验进行数据分析。详细解释了t统计量的计算方法,包括样本自由度的计算,并探讨了Cohen’sd效应量的计算,以及标准误差的计算方式。此外,还介绍了合并方差的概念及其在标准误差计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

t分布

当我们不知道总体标准偏差时,用t检验是最好的方式,用样本标准偏差来取代。

t统计量(t-statistic):计算t统计量与计算z统计量非常相似,可以用以下公式计算:

t=x¯μσn

我们同样必须计算样本的自由度(df):

df=n1

与z统计量一样,我们可以使用来获取低于特定值或在特定值之间的比例。t检验也很适合测试两个样本的均值(如配对t检验),修改公式为:

(x2x1)(μ2μ1)(s21+s22)n

Cohen’s d

Cohen’s d: Cohen’s d 测量了一种现象的强度大小。Cohen’s d 给出了距离均值的标准单位量。计算公式为:

d=x1¯x2¯s

s=(n11)s21+(n21)s22n1+n22

标准误差

标准误差(Standard Error):从总体中抽取的所有样本均值的标准差。计算公式为:

SE=σn

两个样本的标准误差可以通过下面公式计算:
SE=S21n1+S22n2

合并方差(Pooled Variance):在统计学中是指当多个总体均值不同时估算总体方差的方法。其假设每个总体都有着相同的方差。在此假设之下,合并样本方差相比单个的样本方差能更精确地估算总体方差。计算公式为:

S2p=SS1+SS2df1+df2

我们可以用合并方差来计算标准误差:
SE=S2pn1+S2Pn2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值