t分布
当我们不知道总体标准偏差时,用t检验是最好的方式,用样本标准偏差来取代。
t统计量(t-statistic):计算t统计量与计算z统计量非常相似,可以用以下公式计算:
t=x¯−μσn√
我们同样必须计算样本的自由度(df):
df=n−1
与z统计量一样,我们可以使用来获取低于特定值或在特定值之间的比例。t检验也很适合测试两个样本的均值(如配对t检验),修改公式为:
(x2−x1)−(μ2−μ1)(s21+s22)√n
Cohen’s d
Cohen’s d: Cohen’s d 测量了一种现象的强度大小。Cohen’s d 给出了距离均值的标准单位量。计算公式为:
d=x1¯−x2¯s
s=(n1−1)s21+(n2−1)s22n1+n2−2−−−−−−−−−−−−−−−−−−−√
标准误差
标准误差(Standard Error):从总体中抽取的所有样本均值的标准差。计算公式为:
SE=σn√
两个样本的标准误差可以通过下面公式计算:
SE=S21n1+S22n2−−−−−−−−√
合并方差(Pooled Variance):在统计学中是指当多个总体均值不同时估算总体方差的方法。其假设每个总体都有着相同的方差。在此假设之下,合并样本方差相比单个的样本方差能更精确地估算总体方差。计算公式为:
S2p=SS1+SS2df1+df2
我们可以用合并方差来计算标准误差:
SE=S2pn1+S2Pn2−−−−−−−−√