深度学习之人脸识别
随着苹果公司人脸识别技术的突破,人脸识别能力的发展迈出了一大步。此技术是一种生物特征面部识别算法,可执行用户身份验证,并可适用于许多场景,如:
- 解锁手机或计算机等设备
- 打开车门和系统
- 验证在线交易(尤其是金融交易)
- 授权网上购物付款
- 在机场、铁路、体育场、政府办公室和商业机构进行监控。
人脸识别使用简单的二维前向摄像头( 2D front-facing camera )进行,由于不需要物理接触,比指纹更加可靠和安全。
人脸识别背后的依靠的技术是深度学习。深度学习拥有出色的图像特征识别能力,他基于两种神经网络简化了数据分类和人脸识别:
卷积神经网络(CNN,或者convnet) 是一类应用于视觉图像分析的深度前馈人工神经网络。CNN用于分类和目标识别/检测的监督学习,用于图像分割和图像压缩的无监督学习。
深度自动编码器网络用于无监督学习模式下的降维。它试图学习使用编码器f()压缩输入的转换,以通过瓶颈(2或3个神经元)压缩输入,并使用解码器g()重新压缩输入,以近似于标识函数,从而