深度学习之人脸识别

本文介绍了人脸识别技术的发展,特别是深度学习在人脸识别中的应用。通过卷积神经网络(CNN)和深度自动编码器进行特征提取和降维,实现高效的身份验证。人脸识别过程包括人脸检测、对齐、特征提取和识别,广泛应用于手机解锁、支付验证等领域。FaceID利用红外光投影和摄像机生成三维深度图,确保安全性和准确性。
摘要由CSDN通过智能技术生成

深度学习之人脸识别

在这里插入图片描述
随着苹果公司人脸识别技术的突破,人脸识别能力的发展迈出了一大步。此技术是一种生物特征面部识别算法,可执行用户身份验证,并可适用于许多场景,如:

  • 解锁手机或计算机等设备
  • 打开车门和系统
  • 验证在线交易(尤其是金融交易)
  • 授权网上购物付款
  • 在机场、铁路、体育场、政府办公室和商业机构进行监控。

人脸识别使用简单的二维前向摄像头( 2D front-facing camera )进行,由于不需要物理接触,比指纹更加可靠和安全。

人脸识别背后的依靠的技术是深度学习。深度学习拥有出色的图像特征识别能力,他基于两种神经网络简化了数据分类和人脸识别:

卷积神经网络(CNN,或者convnet) 是一类应用于视觉图像分析的深度前馈人工神经网络。CNN用于分类和目标识别/检测的监督学习,用于图像分割和图像压缩的无监督学习。
在这里插入图片描述
深度自动编码器网络用于无监督学习模式下的降维。它试图学习使用编码器f()压缩输入的转换,以通过瓶颈(2或3个神经元)压缩输入,并使用解码器g()重新压缩输入,以近似于标识函数,从而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值