常见的几种限流算法代码实现(JAVA)

最近在学习Sentinel组件需要了解限流算法相关的知识,正好在微信公众号上看到了一篇不错的文章,在此记录一下以下是原文链接。

年轻人,来手撸几种常见的限流算法!

限流算法接口

public interface RateLimiter {
   /**
    * 判断请求是否能够通过
    * @return 能通过返回true否则false
    */
   boolean tryAcquire();
}

一,固定窗口限流算法

首先维护一个计数器,将单位时间段当做一个窗口,计数器记录这个窗口接收请求的次数。

  • 当次数少于限流阀值,就允许访问,并且计数器+1
  • 当次数大于限流阀值,就拒绝访问。
  • 当前的时间窗口过去之后,计数器清零。

假设单位时间是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。如下图:
在这里插入图片描述
国定窗口算法伪代码实现如下:

public class CounterRateLimiter implements RateLimiter {
    // 每秒限制的请求数
    private final long permitsPerSecond;

    // 上一个窗口开始的时间
    private long timestamp = System.currentTimeMillis();

    // 计数器
    private int counter;

    public CounterRateLimiter(long permitsPerSecond) {
        this.permitsPerSecond = permitsPerSecond;
    }

    @Override
    public synchronized boolean tryAcquire() {
        long now = System.currentTimeMillis();
        // 窗口内请求数量小于阈值,更新计数放行,否则拒绝请求
        if (now - timestamp < 1000) {
            if (counter < permitsPerSecond) {
                counter++;
                return true;
            } else {
                return false;
            }
        }
        // 时间窗口过期,重置计数器和时间戳
        counter = 0;
        timestamp = now;
        return true;
    }
}

但是,这种算法有一个很明显的临界问题:假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s和1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦。
在这里插入图片描述

二,滑动窗口限流算法

滑动窗口限流解决固定窗口临界值的问题。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。

一张图解释滑动窗口算法,如下:
在这里插入图片描述
我们来看下滑动窗口是如何解决临界问题的?

假设单位时间还是1s,滑动窗口算法把它划分为5个小周期,也就是滑动窗口(单位时间)被划分为5个小格子。每格表示0.2s。每过0.2s,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1。

TIPS: 当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

滑动窗口算法代码实现如下:

public class SlidingWindowRateLimiter implements RateLimiter {
    // 每分钟限制的请求数
    private final long permitsPerMinute;

    // 计数器,k为当前窗口的开始时间值秒,value为当前窗口的计数
    private final TreeMap<Long, Integer> counters;

    public SlidingWindowRateLimiter(long permitsPerMinute) {
        this.permitsPerMinute = permitsPerMinute;
        this.counters = new TreeMap<>();
    }

    @Override
    public synchronized boolean tryAcquire() {
        // 获取当前时间所在的子窗口值;10s一个窗口
        long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / 10 * 10;
        // 获取当前窗口的请求总量
        int currentWindowCount = getCurrentWindowCount(currentWindowTime);
        if (currentWindowCount >= permitsPerMinute) {
            return false;
        }
        // 计数器加一
        counters.merge(currentWindowTime, 1, Integer::sum);
        return true;
    }

    /**
     * 获取当前窗口的所有请求数(并删除所有无效的子窗口计数器)
     *
     * @param currentWindowTime 当前子窗口时间
     * @return 当前窗口中的计数
     */
    private int getCurrentWindowCount(long currentWindowTime) {
        // 计算出窗口的开始位置时间
        long startTime = currentWindowTime - 50;
        int result = 0;
        // 遍历当前存储的计数器,删除无效的子窗口计数器,并累加当前窗口中的所有计数器之后
        Iterator<Map.Entry<Long, Integer>> entryIterator = counters.entrySet().iterator();
        while (entryIterator.hasNext()) {
            Map.Entry<Long, Integer> entry = entryIterator.next();
            if (entry.getKey() < startTime) {
                entryIterator.remove();
            } else {
                result += entry.getValue();
            }
        }
        return result;
    }
}

三,令牌桶限流算法

面对突发流量的时候,我们可以使用令牌桶算法限流。

令牌桶算法原理:

  • 有一个令牌管理员,根据限流大小,定速往令牌桶里放令牌。
  • 如果令牌数量满了,超过令牌桶容量的限制,那就丢弃。
  • 系统在接受到一个用户请求时,都会先去令牌桶要一个令牌。如果拿到令牌,那么就处理这个请求的业务逻辑;
  • 如果拿不到令牌,就直接拒绝这个请求。

在这里插入图片描述
令牌桶算法代码实现如下:

public class TokenBucketRateLimiter implements RateLimiter {
    // 令牌桶的容量
    private final long capacity;
    // 令牌发放速率
    private final long generatedPerSecond;
    // 最后一个令牌发放的时间
    private long lastTokenTime = System.currentTimeMillis();
    // 当前令牌数量
    private long currentTokens;

    public TokenBucketRateLimiter(long capacity, long generatedPerSecond) {
        this.capacity = capacity;
        this.generatedPerSecond = generatedPerSecond;
    }

    @Override
    public synchronized boolean tryAcquire() {
        /*
          计算当前令牌的数量
          请求时间在最后令牌产生的时间相差大于等于1s
          1.重新计算令牌桶中的令牌数量
          2. 将最后一个令牌发放时间重置为当前时间
         */
        long now = System.currentTimeMillis();
        if (now - lastTokenTime >= 1000) {
            long newPermits = (now - lastTokenTime) / 1000 * generatedPerSecond;
            currentTokens = Math.min(currentTokens + newPermits, capacity);
            lastTokenTime = now;
        }
        if (currentTokens > 0) {
            currentTokens--;
            return true;
        }
        return false;
    }
}

四,漏桶限流算法

漏桶算法面对限流,就更加的柔性,不存在直接的粗暴拒绝。

它的原理很简单,可以认为就是注水漏水的过程。往漏桶中以任意速率流入水,以固定的速率流出水。当水超过桶的容量时,会被溢出,也就是被丢弃。因为桶容量是不变的,保证了整体的速率。
在这里插入图片描述

  • 流入的水滴,可以看作是访问系统的请求,这个流入速率是不确定的。
  • 桶的容量一般表示系统所能处理的请求数。
  • 如果桶的容量满了,就达到限流的阀值,就会丢弃水滴(拒绝请求)
  • 流出的水滴,是恒定过滤的,对应服务按照固定的速率处理请求。

漏桶算法代码实现如下:

public class LeakyBucketRateLimiter implements RateLimiter {
    // 桶的容量
    private final int capacity;
    // 漏出的速率
    private final int permitsPerSecond;
    // 剩余水量
    private long leftWater;
    // 上次注入水的时间
    private long timeStamp = System.currentTimeMillis();

    public LeakyBucketRateLimiter(int capacity, int permitsPerSecond) {
        this.capacity = capacity;
        this.permitsPerSecond = permitsPerSecond;
    }

    @Override
    public synchronized boolean tryAcquire() {
        // 计算剩余水量
        long now = System.currentTimeMillis();
        long timeGap = (now - timeStamp) / 1000;
        leftWater = Math.max(0, leftWater - timeGap * permitsPerSecond);
        timeStamp = now;
        // 如果未满,则放行;否则限流
        if (leftWater < capacity){
            leftWater += 1;
            return true;
        }
        return false;
    }
}

这并不是一个完整的漏桶算法的实现,以上代码中只是对流量是否会被抛弃进行校验,即tryAcquire返回true表示漏桶未满,否则表示漏桶已满丢弃请求。

想要以恒定的速率漏出流量,通常还应配合一个FIFO队列来实现,当tryAcquire返回true时,将请求入队,然后再以固定频率从队列中取出请求进行处理。示例代码如下:

@Test
public void testLeakyBucketRateLimiter() throws InterruptedException {
    ScheduledExecutorService scheduledExecutorService = Executors.newSingleThreadScheduledExecutor();
    ExecutorService singleThread = Executors.newSingleThreadExecutor();

    LeakyBucketRateLimiter rateLimiter = new LeakyBucketRateLimiter(20, 20);
    // 存储流量的队列
    Queue<Integer> queue = new LinkedList<>();
    // 模拟请求  不确定速率注水
    singleThread.execute(() -> {
        int count = 0;
        while (true) {
            count++;
            boolean flag = rateLimiter.tryAcquire();
            if (flag) {
                queue.offer(count);
                System.out.println(count + "--------流量被放行--------");
            } else {
                System.out.println(count + "流量被限制");
            }
            try {
                Thread.sleep((long) (Math.random() * 1000));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    });

    // 模拟处理请求 固定速率漏水
    scheduledExecutorService.scheduleAtFixedRate(() -> {
        if (!queue.isEmpty()) {
            System.out.println(queue.poll() + "被处理");
        }
    }, 0, 100, TimeUnit.MILLISECONDS);

    // 保证主线程不会退出
    while (true) {
        Thread.sleep(10000);
    }
}

漏桶算法存在目的主要是用来平滑突发的流量,提供一种机制来确保网络中的突发流量被整合成平滑稳定的额流量。

不过由于漏桶对流量的控制过于严格,在有些场景下不能充分使用系统资源,因为漏桶的漏出速率是固定的,即使在某一时刻下游能够处理更大的流量,漏桶也不允许突发流量通过。

五,滑动日志限流算法

滑动日志是一个比较“冷门”,但是确实好用的限流算法。滑动日志限速算法需要记录请求的时间戳,通常使用有序集合来存储,我们可以在单个有序集合中跟踪用户在一个时间段内所有的请求。

假设我们要限制给定T时间内的请求不超过N,我们只需要存储最近T时间之内的请求日志,每当请求到来时判断最近T时间内的请求总数是否超过阈值。
在这里插入图片描述![

滑动日志算法代码实现如下:


public class SlidingLogRateLimiter implements RateLimiter {
    // 每分钟限制的请求数
    private static final long PERMITS_PER_MINUTE = 60;
    // 请求日志计数器,k-为请求的时间(秒),value当前时间的请求数量
    private final TreeMap<Long, Integer> requestLogCountMap = new TreeMap<>();

    @Override
    public synchronized boolean tryAcquire() {
        // 最小时间粒度为秒
        long currentTimeStamp = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC);
        // 获取当前窗口的请求总数
        int currentWindowCount = getCurrentWindowCount(currentTimeStamp);
        if (currentWindowCount >= PERMITS_PER_MINUTE) {
            return false;
        }
        // 请求成功,将当前请求日志加入到日志计数器中
        requestLogCountMap.merge(currentTimeStamp, 1, Integer::sum);
        return false;
    }

    /**
     * 统计当前时间窗口内的请求数
     *
     * @param currentTimeStamp 当前时间
     * @return 请求数
     */
    private int getCurrentWindowCount(long currentTimeStamp) {
        // 计算出窗口的开始位置时间
        long startTime = currentTimeStamp - 59;
        // 遍历当前存储的计数器,删除无效的子窗口计数器,并累加当前窗口中的所有计数器之和
        return requestLogCountMap.entrySet()
                .stream()
                .filter(entry -> entry.getKey() >= startTime)
                .mapToInt(Map.Entry::getValue)
                .sum();
    }


}

滑动日志能够避免突发流量,实现较为精准的限流;同样更加灵活,能够支持更加复杂的限流策略,如多级限流,每分钟不超过100次,每小时不超过300次,每天不超过1000次,我们只需要保存最近24小时所有的请求日志即可实现。

灵活并不是没有代价的,带来的缺点就是占用存储空间要高于其他限流算法。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

活跃的咸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值