题目
统计所有小于非负整数 n 的质数的数量。
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
方法一:枚举
外层循环遍历2~n,内存循环遍历2 ~j,j < i
如果出现i%j==0,说明不是素数。
// 枚举
public void primeMethod(int n) {
int count = 0;
boolean flag = true;
for (int i = 2; i < n; i++) {
for (int j = 2; j < i; j++) {
if (i % j == 0) {
flag = false;
}
}
if (flag) {
count++;
}
}
}
// 改进
public int primeMethod2(int n) {
int ans = 0;
for (int i = 2; i < n; i++) {
ans += isPrime(i) ? 1 : 0;
}
System.out.println(ans);
return ans;
}
public boolean isPrime(int x) {
//注意是=
for (int i = 2; i <= Math.sqrt(x); i++) {
if (x % i == 0) {
return false;
}
}
return true;
}
时间复杂度:O(n根号n)
空间复杂度:O(1)
方法二:埃氏筛
时间复杂度:O(nlogn)
空间复杂度:O(n)
如果 x 是质数,那么x 的倍数 2x,3x,… 一定不是质数
class Solution {
public int countPrimes(int n) {
int[] isPrime = new int[n];
Arrays.fill(isPrime, 1);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (isPrime[i] == 1) {
ans += 1;
//如果i不是long的话,乘法的时候i*i就溢出了
//就会出错
if ((long) i * i < n) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = 0;
}
}
}
}
return ans;
}
}
不太好理解的地方:
if ((long) i * i < n) {
for (int j = i * i; j < n; j += i) {
isPrime[j] = 0;
}
}
首先i * i 可能会很大,所以我们要转为long型,只有转换了之后,才不会溢出。
在小于n的范围内,将 i 的倍数设为0
例如:
i =2,则j =i*i =4;
然后 j+=i,j=6、8、10,依次为2的3倍,4倍,5倍。。。。直到遍历完n范围的i 的倍数。
方法三:线性筛
相较于埃氏筛,我们多维护一个primes 数组表示当前得到的质数集合。我们从小到大遍历,如果当前的数 x 是质数,就将其加入primes 数组。
static public int countPrimes(int n) {
int count = 0;
boolean prime[] = new boolean[n];
isPrime(prime, n);
for (int i = 0; i < prime.length; i++) {
// 为素数则+
if (prime[i]) {
count++;
}
}
return count;
}
public static void isPrime(boolean[] prime, int n) {
// 从2开始算,0和1不是素数,为false,下面也不会考虑这两个
for (int i = 2; i < prime.length; i++) {
prime[i] = true;
}
int x = 2;
//遍历2~n,将x的倍数对应位置设为false
while (x < n) {
for (int i = 2; x * i < n; i++) {
// 素数的倍数,就不是素数了
prime[x * i] = false;
}
x++;
}
}
反思
好好思考呀!
补个小学知识:
质数:也称素数,即只能被1和它本身整除的正整数。如2,3,5,7等,2是唯一的偶数质数.
合数:与素数相反,除1和它本身之外,至少还有1个数能够整除它。如4,9,12等。
约数:如果一个数能整除另一个数,则这个数称为另一个数的约数,也可以说是它的因数。
互质数:公因数只有1的两个非零自然数,叫做互质数。
质因数:若a是b的因数,且a是质数,则称a是b的质因数
上述概念,一般是在正整数范围内研究。
end