LeetCode204.计数质数(Java+三种方法)

题目

统计所有小于非负整数 n 的质数的数量。

输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

方法一:枚举

外层循环遍历2~n,内存循环遍历2 ~j,j < i
如果出现i%j==0,说明不是素数。

	// 枚举
	public void primeMethod(int n) {
		int count = 0;
		boolean flag = true;
		for (int i = 2; i < n; i++) {
			for (int j = 2; j < i; j++) {
				if (i % j == 0) {
					flag = false;
				}
			}
			if (flag) {
				count++;
			}
		}
	}

	// 改进
	public int primeMethod2(int n) {
		int ans = 0;
		for (int i = 2; i < n; i++) {
			ans += isPrime(i) ? 1 : 0;
		}
		System.out.println(ans);
		return ans;
	}

	public boolean isPrime(int x) {
		//注意是=
		for (int i = 2; i <= Math.sqrt(x); i++) {
			if (x % i == 0) {
				return false;
			}
		}
		return true;
	}

时间复杂度:O(n根号n)
空间复杂度:O(1)

方法二:埃氏筛

时间复杂度:O(nlogn)
空间复杂度:O(n)
如果 x 是质数,那么x 的倍数 2x,3x,… 一定不是质数

class Solution {
    public int countPrimes(int n) {
        int[] isPrime = new int[n];
        Arrays.fill(isPrime, 1);
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            if (isPrime[i] == 1) {
                ans += 1;
                //如果i不是long的话,乘法的时候i*i就溢出了
                //就会出错
                if ((long) i * i < n) {
                    for (int j = i * i; j < n; j += i) {
                        isPrime[j] = 0;
                    }
                }
            }
        }
        return ans;
    }
}

不太好理解的地方:

if ((long) i * i < n) {
    for (int j = i * i; j < n; j += i) {
         isPrime[j] = 0;
     }
 }

首先i * i 可能会很大,所以我们要转为long型,只有转换了之后,才不会溢出。
在小于n的范围内,将 i 的倍数设为0
例如:
i =2,则j =i*i =4;
然后 j+=i,j=6、8、10,依次为2的3倍,4倍,5倍。。。。直到遍历完n范围的i 的倍数。

方法三:线性筛

相较于埃氏筛,我们多维护一个primes 数组表示当前得到的质数集合。我们从小到大遍历,如果当前的数 x 是质数,就将其加入primes 数组。

static public int countPrimes(int n) {
		int count = 0;
		boolean prime[] = new boolean[n];
		isPrime(prime, n);
		for (int i = 0; i < prime.length; i++) {
			// 为素数则+
			if (prime[i]) {
				count++;
			}
		}
		return count;
	}

	public static void isPrime(boolean[] prime, int n) {
		// 从2开始算,0和1不是素数,为false,下面也不会考虑这两个
		for (int i = 2; i < prime.length; i++) {
			prime[i] = true;
		}
		int x = 2;
		//遍历2~n,将x的倍数对应位置设为false
		while (x < n) {
			for (int i = 2; x * i < n; i++) {
				// 素数的倍数,就不是素数了
				prime[x * i] = false;
			}
			x++;
		}
	}

反思

好好思考呀!
补个小学知识:
质数:也称素数,即只能被1和它本身整除的正整数。如2,3,5,7等,2是唯一的偶数质数.
合数:与素数相反,除1和它本身之外,至少还有1个数能够整除它。如4,9,12等。
约数:如果一个数能整除另一个数,则这个数称为另一个数的约数,也可以说是它的因数。
互质数:公因数只有1的两个非零自然数,叫做互质数。
质因数:若a是b的因数,且a是质数,则称a是b的质因数
上述概念,一般是在正整数范围内研究。
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值