题目
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5]
和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
输入: [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
输入: [1,2,3,4,5,6,7,8,9]
输出: 2
代码
我的思路:
前<后:要上升,得先下降,才能满足题意的摆动
前>后:要下降,得先上升。
用boolean类型的up和down,初始为true
如果前<后,down得为true才能up为true,上升之后down=false;
如果前>后,up得为true才能down为true,下降之后up=false;
其实还有前后等值的情况,这种就直接跳过
public static int wiggleMaxLengthSelfDone(int[] nums) {
boolean up = true;
boolean down = true;
int count = 0;
for (int i = 1; i < nums.length; i++) {
if (nums[i] > nums[i - 1] && down) {// 上升
down = false;
up = true;
count++;
} else if (nums[i] < nums[i - 1] && up) {// 下降
count++;
down = true;
up = false;
}
}
return count + 1;
}
参考别人的
public int wiggleMaxLength(int[] nums) {
int n = nums.length;
if (n < 2) {
return n;
}
int up = 1;
int down = 1;
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) {
up = down + 1;
}
if (nums[i] < nums[i - 1]) {
down = up + 1;
}
}
return Math.max(up, down);
}
下面这个方法跟我的相似,不过我的比较笨,我用了两个变量
public int wiggleMaxLength2(int[] nums) {
int length = nums.length;
if (length <= 1) {
return length;
}
int count = 1;
// 1上 2 下 3 等
int up = 3;
for (int i = 1; i < nums.length; i++) {
if (nums[i] > nums[i - 1] && up != 1) {
count++;
up = 1;
} else if (nums[i] < nums[i - 1] && up != 2) {
count++;
up = 2;
}
}
return count;
}
总结
这道题摆动序列,一升一降,才能体现摆动