NGSIM数据集解析(含代码)

一、数据集介绍

NGSIM(Next Generation Simulation)数据集是美国FHWA搜集的美国高速公路行车数据,它包括了US101、I-80等道路上的所有车辆在一个时间段的车辆行驶状况。数据是采用摄像头获取,然后加工成一条一条的轨迹点记录。

下载网址:Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data | Department of Transportation - Data Portal

下载的时候注意点击Export然后选择CSV或CSV for Excel下载

二、常见数据类型总结

此处借鉴了知乎@令狐小侠侠大佬的回答

下面是详解:(仅针对部分重要且常用的数据类型进行介绍)

注:不同的道路其车道信息不同,行车数据差异较大

三、代码解析

以下是main函数部分 


import pandas as pd
import os
import json
import random
​
#抽取出US101数据,定义应该函数按照全局时间进行筛选
def cutbyRoad(df=None, road=None):
    '''
    :param df: 打开后文件
    :param road: 路段名称
    :return: 切路df,按照全局时间排序
    '''
    road_df = df[df['Location'] == road]
    return road_df.sort_values(by='Global_Time', ascending=True)
​
​
#需要的数据是某一区域内,某一时刻的车辆及它们未来10s的行车数据
#首先要获得某一区域某一时刻的车辆ID列表:
def cutbyRoad(df=None, road=None):
    '''
    :param df: 打开后文件
    :param road: 路段名称
    :return: 切路df,按照全局时间排序
    '''
    road_df = df[df['Location'] == road]
    return road_df.sort_values(by='Global_Time', ascending=True)
​
#原数据集的单位,时间是ms,长度单位全是ft。给它转换一下:
def unitConversion(df):
    '''
    转换后长度单位为m,时间单位为0.1秒
    :param df: 被转换df
    :return: 转换后df
    '''
    ft_to_m = 0.3048
    df['Global_Time'] = df['Global_Time'] / 100
    for strs in ["Global_X", "Global_Y", "Local_X", "Local_Y", "v_length", "v_Width"]:
        try:
            df[strs] = df[strs] * ft_to_m
        except:
            df[strs] = df[strs].apply(lambda x: float(x.replace(',', ''))) * ft_to_m
    df["v_Vel"] = df["v_Vel"] * ft_to_m * 3.6
    return df
​
​
def cutbyPosition(road_df, start_y=0, start_time=0, area_length=50):
    '''
    给定起始时间,起始y,区间长度,输出区间内车辆list
    :param road_df:限定路段后的df
    :param start_y: 区域开始段,单位为m
    :param start_time: 起始时间,0.1s
    :param area_length: 区域长度单位为m
    :return: vehicle_list为起始框内部车辆编号
    '''
    #设定开始时间(在US101的基础上限定全局开始时间
    area_df = road_df[road_df['Global_Time'] == start_time]
    #设置开始时间后,设定原点位置(即其实的纵坐标),相当于设定好了车道周围的区域(纵向范围)
    area_df = area_df[(area_df['Global_Y'] - start_y <= area_length) & (
            area_df['Global_Y'] - start_y >= 0)]
    #unique()函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表
    #返回在限定范围内对应的车辆编号(可能会有不同车辆重复利用的情况,因此进行删除)
    vehicle_list = area_df['Vehicle_ID'].unique()
    #返回限定范围内的车辆的编号(大于2辆才返回,若仅有自身则无需返回)
    if len(list(vehicle_list)) <= 2:
        return None
    else:
        return list(vehicle_list)
# start_y, start_time可以根据自己的需要取Global_Y,Global_Time的最大值最小值区间内值。
​
#定义函数迭代获取10s内车辆数据(此处为限定持续时间) 
def cutbyTime(road_df, start_time=0, vehicle_list=None, time_length=10.0, stride=1):
    '''
    :param inint_df:road_df
    :param start_frame: 开始帧
    :param time_length: 采样时间长度,单位为s
    :param stride: 采样步长
    :return: 返回一组清洗完数据time
    '''
    #isin函数多用来清洗数据,删选过滤掉DataFrame中一些行
    #Pandas isin()方法用于过滤数据帧。isin() 方法有助于选择在特定列中具有特定(或多个)值的行
    #取出之前筛选好的路段:
    temp_df = road_df[road_df['Vehicle_ID'].isin(vehicle_list)]
    #DataFrame是一种数据类型,其单元格可以存放数值、字符串等,
    #这和excel表很像,同时DataFrame可以设置列名columns与行名index
    one_sequence = pd.DataFrame()
    for vehicle in vehicle_list:#对在限定范围内的车辆ID进行检索
        for time in range(int(time_length * 10 / stride)):#此处提取10个10s的片段
            df = temp_df[#跳转到下一个时间段
                (temp_df['Vehicle_ID'] == vehicle) & (temp_df['Global_Time'] == (start_time + time * stride))]
            if df.shape[0] == 1:
                one_sequence = pd.concat([one_sequence, df])
​
            else:
                return None
    return one_sequence
​
#定义函数存储CSV
def saveCsv(df, file_name):
    '''
    :param df: 存入df
    :param file_name: 文件名
    :return: 无
    '''
    df = df.reset_index(drop=True)  # 重置索引
    if not os.path.exists('//'):
        os.makedirs('//')
    df.to_csv('data//' + file_name + '.csv', mode='a', header=True)
​
​
with open("……//dataExecute.json", "r") as f:
    conf = json.load(f)
​
# 打开csv数据
init_df = pd.read_csv(conf['data_source'], usecols=conf['useCols'], nrows=1000000)
# 获得us-101数据,并且按照GlobalTime排序
road_df = cutbyRoad(init_df, road=conf['road'])
# 单位转成米(m)和秒(s)
road_df = unitConversion(road_df)
# 限定 坐标范围、时间范围
min_Global_Y, max_Global_Y = road_df['Global_Y'].min() + 100, road_df['Global_Y'].max()
min_Global_Time, max_Global_Time = road_df['Global_Time'].min(), road_df['Global_Time'].max()
# 坐标分组数、时间分组数
total_dist = int((max_Global_Y - min_Global_Y) / (conf['area_step']))
total_time = int((max_Global_Time - min_Global_Time) / (conf['time_step'] * 10))
​
print("共计{}--{}组数据,时间步长为{},距离步长为{}".format(total_dist, total_time, conf['time_step'], conf['area_step']))
​
total_data = 0
# 坐标、时间 开始的分组
for dist_index in range(conf["hist_dist"], total_dist):
    for time_index in range(conf["hist_time"], total_time):
        if conf["noise"]:
            time_noise = random.randint(0, 100)
            dist_noise = random.randint(0, 100)
        else:
            time_noise, dist_noise = 0, 0
​
        # 开始时间和坐标
        start_time = min_Global_Time + time_index * conf['time_step'] * 10 + time_noise * 10
        start_y = min_Global_Y + dist_index * conf['area_step'] + dist_noise
​
        vehicle_list = cutbyPosition(road_df, start_y=start_y, start_time=start_time,
                                     area_length=conf['area_length'])
​
        if vehicle_list is None:
            # print('{}秒时刻,{}为起点区域内车辆过少,进入下个时段'.format(start_time * 0.1, start_y))
            print('{}--{}内车辆过少,进入下个时段'.format(dist_index, time_index))
            continue
​
        one_sequence = cutbyTime(road_df, start_time=start_time, vehicle_list=vehicle_list,
                                 time_length=conf['time_length'],
                                 stride=conf['stride'])
        if one_sequence is None:
            # print('{}时刻,{}为起点区域内车辆存在消失,进入下个时段'.format(start_time * 0.1, start_y))
            print('{}--{}内车辆存在消失,进入下个时段'.format(dist_index, time_index))
        else:
            total_data += 1
            saveCsv(one_sequence, file_name=conf['road'])
            print('{}/{} - {}/{} saved! Exist {} data! '.format(dist_index, total_dist, time_index, total_time,
                                                                total_data))
​
        if total_data == conf["need_num"]:
            print("数据采集完成")
            break
    
    if total_data == conf["need_num"]:
        print("数据采集完成")
        break

同时此处为了方便修改,利用json文件进行传参(下面的data_source更改为下载的CSV的地址)

{
    "data_source": "……data//data.csv",
    "road": "us-101",
    "useCols": [
      "Vehicle_ID",
      "Frame_ID",
      "Total_Frames",
      "Global_Time",
      "Global_X",
      "Global_Y",
      "Local_X",
      "Local_Y",
      "v_length",
      "v_Width",
      "v_Class",
      "Location",
      "v_Vel",
      "Lane_ID"
    ],
    "area_length": 80,
    "time_length": 10,
    "area_step": 20,
    "time_step": 30,
    "stride": 5.0,
    "hist_dist":6,
    "hist_time":0,
    "noise": 1,
    "need_num": 20
  }

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值