Data Mining数据挖掘—5. Association Analysis关联分析

6. Association Analysis

Given a set of records each of which contains some number of items from a given collection.
Produce dependency rules that will predict the occurrence of an item based on occurrences of other items.
Application area: Marketing and Sales Promotion, Content-based recommendation, Customer loyalty programs

Initially used for Market Basket Analysis to find how items purchased by customers are related. Later extended to more complex data structures: sequential patterns and subgraph patterns

6.1 Simple Approach: Pearson’s correlation coefficient

Pearson's correlation coefficient in Association Analysis

correlation not equals to causality

6.2 Definitoin

6.2.1 Frequent Itemset

Frequent Itemset

6.2.2 Association Rule

Association Rule

6.2.3 Evaluation Metrics

Evaluation Metrics

6.3 Associate Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold
minsup and minconf are provided by the user
Brute-force approach
Step1: List all possible association rules
Step2: Compute the support and confidence for each rule
Step3: Remove rules that fail the minsup and minconf thresholds

But Computationally prohibitive due to large number of candidates!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值