最近在b站看了沐神的深度学习课程,在手搓注意力机制。偶然习得了Masked Softmax。
在注意力当中,softmax操作用于输出一个概率分布作为注意力权重。在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。例如,为了在机器翻译任务中高效处理小批量数据集,某些文本序列被填充了没有意义的特殊词元。为了仅将有意义的词元作为value来获取注意力汇聚,可以指定一个有效序列长度(即词元的个数),以便在计算softmax时过滤掉超出指定范围的位置。下面的masked_softmax
函数实现了这样的掩码softmax操作,其中任何超出有效长度的位置都被掩蔽并置为0。
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
上面X代表样本输入,valid_lens代表定义的有效长度。
假设有两个2×4矩阵表示的样本,这两个样本的有效长度分别为2和3。经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
这样,得到的输出为:第一个(2,4)的矩阵的有效长度变为2,第二个(2,4)的矩阵的有效长度变为3
同样,定义有效长度也可以使用二维张量,为矩阵样本中的每一行指定有效长度。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
第一个(2,4)的矩阵第一行有效长度变为1,第二行有效长度变为3;第一个(2,4)的矩阵第一行有效长度变为2,第二行有效长度变为4。