LM Studio+DeepSeek:
优势:DeepSeek 在自然语言处理、代码生成和多轮对话等任务中表现出色。借助 LM Studio 这个专为本地运行大语言模型设计的客户端工具,能轻松在本地部署 DeepSeek。LM Studio 支持多种开源模型,提供简单易用界面,无需复杂代码即可加载和运行模型,保障数据隐私安全。从硬件适配角度看,你的 4060 8G 显卡满足部署要求(官方建议显卡 GTX 1060(6GB)及以上,推荐 RTX3060 及以上 )。在模型选择上,DeepSeek 有不同参数规模版本,其中 7B 版本文件大小提升至 8GB,推荐 16GB 内存 + 8GB 显存,比较适合大多数用户,也契合你目前的电脑配置,可用于普通内容创作及开发测试场景 。8B 版本在 7B 基础上更精细一些,同样适合你的配置以及对内容要求更高更精的场景。
部署步骤:首先在官网 lmstudio.ai 下载对应操作系统的 LM Studio 安装包,下载完成后双击运行并按提示完成安装。安装好启动 LM Studio,点击右下角设置图标(小齿轮)将语言改为简体中文。若能自行找到 DeepSeek 不同版本的模型,下载到本地后,点击左上方文件夹图标选择模型目录导入即可;若不会找模型,可在 LM Studio 设置里,在常规部分选中 “Use LM Studio’s Hugging Face” 的复选框,接着点击左上方搜索图标(放大镜),搜索 deepseek 就能找到各种版本模型 。完成模型加载后,点击 LM Studio 左上方对话框,在顶部选择要加载的模型,开始前还能在顶部设置上下文长度和 GPU 负载等参数,之后就可以开始使用 DeepSeek 进行对话交互。
Lobe Chat:
优势:这是一个开源的现代设计 AI 聊天框架,支持多种 AI 提供商、知识库以及插件系统。它支持基于 Ollama 的本地模型,允许你灵活使用自己的或第三方模型,Ollama 的快速推理速度能显著缩短处理时间,保持卓越模型性能。Lobe Chat 功能全面,支持文件上传与知识库功能,可上传各类文件并创建知识库;支持多模型服务提供商,包括 awsbedrock、anthropic(claude)、googleai 等;支持模型视觉识别,能识别用户上传图片内容并基于此对话;具备语音合成与语音识别功能,可实现文本转语音和语音转文本;支持文本生成图片,能调用 dall - e3、midjourney 等工具将想法转化为图像;还有插件系统,其助手能获取和处理实时信息 。对于你的 4060 8G 配置而言,在运行一些对硬件要求不是特别极端的模型时能够较为流畅地工作,而且其多方面功能可以满足多样化的使用需求。
部署方式:Lobe Chat 提供多种自托管方案,你可以选择在 Vercel、Zeabur、Sealos 等平台上进行部署,或者使用 Docker 镜像在私人设备上部署 Lobe Chat 服务。使用 Vercel、Zeabur 或 Sealos 部署,只需准备好 OpenAI API key,并按照提示步骤配置即可完成部署。若使用 Docker 部署,通过相关命令即可在私人设备上启动 Lobe Chat 服务 。
Cherry Studio:
优势:这是一款跨平台桌面客户端,在 GitHub 免费开源,对小白友好且功能强大。它将 API 接口和 web 端使用方式集成,提供便捷 AI 对话体验,支持 Windows、Mac 和 Linux 系统。该工具全面覆盖主流 LLM 云服务,也兼容第三方中转服务商 OpenAI 格式的 API。对于追求本地部署的用户,支持通过 Ollama 运行本地模型,保障数据安全。其内置 Markdown 和 Mermaid 渲染功能,方便编写文档和绘制流程图;具有智能体功能,可创建定制化智能体贴合工作流程;还集成了小程序功能,囊括 ChatGPT、万知、Kimi、豆包等绝大多数 AI 网站 。在硬件利用上,它的资源占用相对较为灵活,4060 8G 的配置能够较好地支撑其运行,为你带来丰富的 AI 对话相关体验。
部署与使用:它无需复杂环境配置,只需下载安装包即可使用,同时提供详细对接和使用教程。下载安装完成后即可打开使用,若要使用本地模型功能,可通过 Ollama 进行相关模型的配置与加载 。