scikit-learn机器学习笔记——k近邻算法

本文介绍了如何使用Python的scikit-learn库实现k近邻(k-Nearest Neighbors, KNN)算法。从数据预处理、模型选择到交叉验证和超参数调优,详细讲解了KNN算法在预测用户签到位置问题上的应用。通过交叉验证和网格搜索优化KNN模型的k值,以提高预测准确率。
摘要由CSDN通过智能技术生成

k近邻算法

  定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近) 的样本中的大多数属于某一个类别,则该样本也属于这个类别。

  来源:KNN算法最早是由Cover和Hart提出的一种分类算法。

  计算距离公式:两个样本的距离可以通过如下公式计算,又叫欧式距离。

  比如说,a(a1,a2,a3),b(b1,b2,b3)。
( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 + ( a 3 − b 3 ) 2 \sqrt{(a 1-b 1)^{2}+(a 2-b 2)^{2}+(a 3-b 3)^{2}} (a1b1)2+(a2b2)2+(a3b3)2

sklearn k-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
• n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用 的邻居数。
• algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计 算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使 用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的 算法。 (不同实现方式影响效率)。

k近邻算法实例-预测入住位置

预测入住位置
在这里插入图片描述

在这里插入图片描述

实例流程:

1、数据集的处理
2、分割数据集
3、对数据集进行标准化
4、estimator流程进行分类预测

数据的处理

首先对数据进行以下处理:

1、缩小数据集范围

DataFrame.query() 

2、处理日期数据

pd.to_datetime pd.DatetimeIndex 

3、增加分割的日期数据
4、删除没用的日期数据 pd.drop
5、将签到位置少于n个用户的删除

place_count=data.groupby('place_id').aggregate(np.count_nonzero) 
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]

项目代码示例:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

import pandas as pd




def knncls():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    # 读取数据
    data = pd.read_csv("./train.csv")

    # print(data.head(10))

    # 处理数据
    # 1、缩小数据,查询数据晒讯
    data = data.query("x > 1.0 &  x < 1.25 & y > 2.5 & y < 2.75")

    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')

    print(time_value)

    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)

    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday

    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)

    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出数据当中的特征值和目标值
    y = data['place_id']

    x = data.drop(['place_id'], axis=1)

    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()

    # fit, predict,score
    knn.fit(x_train, y_train)

    # 得出预测结果
    y_predict = knn.predict(x_test)

    print("预测的目标签到位置为:", y_predict)

    # 得出准确率
    print("预测的准确率:", knn.score(x_test, y_test))

    return None


if __name__ == '__main__':
    knncls()
预测的目标签到位置为: [1582523772 6399991653 1097200869 ... 2754348284 2327054745 8048985799]
预测的准确率: 0.41702127659574467

模型的选择与调优

交叉验证

  将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。

在这里插入图片描述

超参数搜索-网格搜索

  通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值), 这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

k模型
k=3模型1
k=5模型2
k=10模型3
超参数搜索-网格搜索API

sklearn.model_selection.GridSearchCV

• sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv= None)
• 对估计器的指定参数值进行详尽搜索 • estimator:估计器对象
• param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
• cv:指定几折交叉验证
• fit:输入训练数据
• score:准确率

结果分析:
• best_score_:在交叉验证中测试的最好结果
• best_estimator_:最好的参数模型
• cv_results_:每次交叉验证后的测试集准确率结果和训练集准确率结果

代码示例:K近邻网格搜索实例

params = {"n_neighbors": [3, 5, 10]}

    gs = GridSearchCV(knn, param_grid=params, cv=5)
    gs.fit(X_train, y_train)

    print('交叉验证的最高分数:', gs.best_score_)
    print('交叉验证的最好估计器:', gs.best_estimator_)
    print('每次交叉验证的结果', gs.cv_results_)
    print('交叉验证的分数:', gs.score(X_test, y_test))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值